lavster
- 213
- 0
hi i was reading a textbook and this statement puzzled me. it stated that \frac{d}{dt}<A>=\frac{1}{ih}[A_{op},H] if \frac{\partial A_{op}}{ \partial t}=0.
i was wanting to prove this and hence show that if Aop commutes A is a constant of motion and can be a good quantum number.
I get that: H is the hamiltonian expressed as follows: (H\phi)=i\hbar\frac{\partial \phi}{\partial t} , <A> is the expectation value: <A>=\int{\phi^*A_{op}\phi d\tau} and [A_{op},H] is the commutator (A_{op}H-HA_{op}) and this equals zero when it commutes. However i can't put it together to get the above equation. can someone show me how to do it please?
i was wanting to prove this and hence show that if Aop commutes A is a constant of motion and can be a good quantum number.
I get that: H is the hamiltonian expressed as follows: (H\phi)=i\hbar\frac{\partial \phi}{\partial t} , <A> is the expectation value: <A>=\int{\phi^*A_{op}\phi d\tau} and [A_{op},H] is the commutator (A_{op}H-HA_{op}) and this equals zero when it commutes. However i can't put it together to get the above equation. can someone show me how to do it please?
Last edited: