If the speed of light is constant in any inertial frame

quincy harman
Messages
41
Reaction score
0
If the speed of light is constant in any inertial frame then how do we measure a red shift or blue shift or why?
 
Physics news on Phys.org
Sorry I didn't think the question through before I posted. I just remembered the wavelength has nothing to do with the speed.
 
Imagine you have a light source at rest between two detectors which starts emitting light waves.

It would look something like this
doppler1.gif


Each light wave spreads out in a circle at c, with each wave front hitting each detector at a rate equal to the emission frequency.

Now consider what happens if the the light source is moving towards one detector and away for the other as seen from the frame of the detectors.

The light waves still spread out in a circle at c, but the origin point of each wave front is closer to one detector than it is from the other and the center of each circular wave front is displaced from the previous one. The wave fronts hitting the blue dot are closer together and the one hitting the red dot are further apart. since they are still traveling at c with respect to the detectors, the Blue dot see a higher frequency of light and the red dot a lower frequency.
doppler2.gif


As far as the light source is concerned, the waves still are moving outward from it at c in circles, but the red dot is running away from the wave fronts traveling in its direction and the blue dot is rushing towards the wave fronts in its direction. So according to the Light source frame we get the same result, wave fronts hit the blue dot at a faster rate than they hit the red dot.

So no matter which frame you pick, you expect the detectors to register Doppler shifts.
 
  • Like
Likes quincy harman
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top