bugatti79
- 786
- 4
If lim x_n=x n to infinity and lim y_n=y n to infinity
prove rigorously
lim n to infinity (x_n/5+10y_n)=x/5+10y.
My attempt
let ε>0. Must find n_0 \in \mathbb{N} such that
||(x_n/5+10y_n)-(x/5+10y)||<ε for all n>n_0
||(x_n/5+10y_n)-(x/5+10y)||=||(x_n/5-x/5)||+||10y_n-10y|| \le ||(x_n/5-x/5||+||(10y_n-10y)||
since x_n=x for the limit n to infinity and similarly for y_n and given ε>0 then ε/2>0
so there exist n_1 \in N such that ||x_n/5-x/5||< ε/2 for all n \ge n_1
and
||10y_n-10y||< ε/2 for all n \ge n_2
Let n_0=max{n_1,n_2}, then for all n \ge n_0
implies ||(x_n/5+10y_n)||-||x/5+10y|| \le ||(x_n/5-x/5||+||(10y_n-10y)||<ε/2+ε/2=ε...?
prove rigorously
lim n to infinity (x_n/5+10y_n)=x/5+10y.
My attempt
let ε>0. Must find n_0 \in \mathbb{N} such that
||(x_n/5+10y_n)-(x/5+10y)||<ε for all n>n_0
||(x_n/5+10y_n)-(x/5+10y)||=||(x_n/5-x/5)||+||10y_n-10y|| \le ||(x_n/5-x/5||+||(10y_n-10y)||
since x_n=x for the limit n to infinity and similarly for y_n and given ε>0 then ε/2>0
so there exist n_1 \in N such that ||x_n/5-x/5||< ε/2 for all n \ge n_1
and
||10y_n-10y||< ε/2 for all n \ge n_2
Let n_0=max{n_1,n_2}, then for all n \ge n_0
implies ||(x_n/5+10y_n)||-||x/5+10y|| \le ||(x_n/5-x/5||+||(10y_n-10y)||<ε/2+ε/2=ε...?