Implicit differentiation: why apply the Chain Rule?

mcastillo356
Gold Member
Messages
634
Reaction score
342
Homework Statement
Calculate ##dy/dx## if ##y^2=x##
Relevant Equations
Chain Rule
Hi, PF

##y^2=x## is not a function, but it is possible to obtain the slope at any point ##(x,y)## of the equation without previously clearing ##y^2##. It's enough to differentiate respect to ##x## the two members, treat ##y## like a ##x## differentiable function and make use of the Chain Rule to differentiate ##y^2##:

##\dfrac{d}{dx}(y^2)=\dfrac{d}{dx}(x)##

##2y\dfrac{dy}{dx}=1##

##\dfrac{dy}{dx}=\dfrac{1}{2y}##

I can't view ##y^2## like a composite function, instead of just a quadratic expression.

Greetings!
 
Physics news on Phys.org
You have to consider ##y^2## as the composite of two functions, namely ##t\stackrel{q}{\longmapsto} t^2## after ##x\stackrel{y}{\longmapsto} y(x)## which is ##(q\circ y)\, : \,x \longmapsto (q\circ y)(x)=q(y(x))=y(x)^2.##

Edit: This leads to an equation of the kind ##f(x)=g(x),## namely ##(q\circ y)(x)=\operatorname{id}(x)## which you differentiated on both sides.
 
  • Like
  • Love
Likes mcastillo356, FactChecker and Delta2
The examples of implicit differentiation are usually more complicated.
If you are specifically asking about this example, the right side is so simple that it is easy to consider x as a function of y, get the derivative dx/dy = 2y, and take the inverse, dy/dx = 1/(2y) to obtain the slope of y as a function of x.
 
  • Love
Likes mcastillo356
Fine, thanks!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top