Implicit differentiation: why apply the Chain Rule?

Click For Summary

Homework Help Overview

The discussion revolves around the application of implicit differentiation, specifically in the context of the equation y² = x. Participants explore the reasoning behind using the Chain Rule in this scenario, despite y² not being a function in the traditional sense.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss differentiating both sides of the equation while treating y as a differentiable function. There are varying perspectives on viewing y² as a composite function versus a simple quadratic expression. Some participants also consider the implications of treating x as a function of y and the resulting derivatives.

Discussion Status

The discussion is active, with participants providing different viewpoints on the application of the Chain Rule and the nature of implicit differentiation. Some guidance has been offered regarding the interpretation of the functions involved, but no consensus has been reached.

Contextual Notes

There is an acknowledgment that implicit differentiation can often involve more complex examples, and the simplicity of the current example may influence the discussion. Participants are also navigating the definitions and assumptions related to the functions involved.

mcastillo356
Gold Member
Messages
658
Reaction score
362
Homework Statement
Calculate ##dy/dx## if ##y^2=x##
Relevant Equations
Chain Rule
Hi, PF

##y^2=x## is not a function, but it is possible to obtain the slope at any point ##(x,y)## of the equation without previously clearing ##y^2##. It's enough to differentiate respect to ##x## the two members, treat ##y## like a ##x## differentiable function and make use of the Chain Rule to differentiate ##y^2##:

##\dfrac{d}{dx}(y^2)=\dfrac{d}{dx}(x)##

##2y\dfrac{dy}{dx}=1##

##\dfrac{dy}{dx}=\dfrac{1}{2y}##

I can't view ##y^2## like a composite function, instead of just a quadratic expression.

Greetings!
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
You have to consider ##y^2## as the composite of two functions, namely ##t\stackrel{q}{\longmapsto} t^2## after ##x\stackrel{y}{\longmapsto} y(x)## which is ##(q\circ y)\, : \,x \longmapsto (q\circ y)(x)=q(y(x))=y(x)^2.##

Edit: This leads to an equation of the kind ##f(x)=g(x),## namely ##(q\circ y)(x)=\operatorname{id}(x)## which you differentiated on both sides.
 
  • Like
  • Love
Likes   Reactions: mcastillo356, FactChecker and Delta2
The examples of implicit differentiation are usually more complicated.
If you are specifically asking about this example, the right side is so simple that it is easy to consider x as a function of y, get the derivative dx/dy = 2y, and take the inverse, dy/dx = 1/(2y) to obtain the slope of y as a function of x.
 
  • Love
Likes   Reactions: mcastillo356
Fine, thanks!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K