Important pi question (when these numbers will reoccur)

9I.
Messages
3
Reaction score
0
after it was found out that the first 9 pi digits 141592653 result in the end sum of 9, i searched for its iteration in the large digit chain of pi. after scanning stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt it was found that .141592653 occurs at the 427238911 place and ends on the 427238920.

not only is 9 my favorite number for mathematical reasons (and non mathematical) but its also a coincidence that the first 9 pi digits end on the digital root of 9, making it the first number which has the same digit sum as also same digital root

thus we can leave it at that it qualifies to be seen as a special occurence in the digital pi chain. the great pi question is on which pi digit do the 427,238,911 numbers start to iterate again. this exact chain of pi digits. it happened once in 427 million, and when will it happen again, all these 427 million as one piece?
 
Mathematics news on Phys.org
We don't even know if it will happen again. But if ##\pi## is a normal number, meaning that all finite sequences are equally likely (which has not been proven yet, but is suspected strongly to be the case), then for a given sequence of ##n## numbers to show up, you will have to go approximately
\frac{10}{9}(10^n - 1)\approx 10^n

digits far in the sequence. So if you want to see the 427,238,911 again, you will have to wait approximately ##10^{427238911}## digits. In comparison, the number of particles in the observable universe is approximately ##10^{80}##, so you'll probably never be able to find this sequence in ##\pi## since there's not enough space to store the digits.
 
i never referenced it to the volume of universe anyway.

so that means this number is somewhere in g1(grahams)?
 
9I. said:
after it was found out that the first 9 pi digits 141592653 result in the end sum of 9, i searched for its iteration in the large digit chain of pi. after scanning stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt it was found that .141592653 occurs at the 427238911 place and ends on the 427238920.

not only is 9 my favorite number for mathematical reasons (and non mathematical) but its also a coincidence that the first 9 pi digits end on the digital root of 9, making it the first number which has the same digit sum as also same digital root

thus we can leave it at that it qualifies to be seen as a special occurence in the digital pi chain. the great pi question is on which pi digit do the 427,238,911 numbers start to iterate again. this exact chain of pi digits. it happened once in 427 million, and when will it happen again, all these 427 million as one piece?
If you digitally root a radian, you will get the same thing. M.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

2
Replies
83
Views
21K
Replies
69
Views
32K
2
Replies
67
Views
14K
Replies
16
Views
3K
Back
Top