brunette15 said:
I am attempting to solve the improper integral (x*cos^2(x))/(1+x^3) dx between infinity and 1 to see if it converges or diverges. My approach was to place a point 'x' that approaches infinity to be able to solve the integral and then evaluate the limits however i am stuck on actually computing the antiderivative. Can anyone help me with this?
Thanks in advance!
Notice that $\displaystyle \begin{align*} \frac{x\cos^2{(x)}}{1 + x^3} \geq 0 \end{align*}$ for all $\displaystyle \begin{align*} x \geq 1 \end{align*}$, and since $\displaystyle \begin{align*} 0 \leq \cos^{(x)} \leq 1 \end{align*}$ for all $\displaystyle \begin{align*} x \end{align*}$, that means $\displaystyle \begin{align*} \frac{x \cos^2{(x)}}{1 + x^3} \leq \frac{x}{1 + x^3} \end{align*}$ for all $\displaystyle \begin{align*} x \geq 1 \end{align*}$. Thus we can say for sure $\displaystyle \begin{align*} 0 \leq \int_1^{\infty}{\frac{x\cos^2{(x}}{1 + x^3}\,\mathrm{d}x} \leq \int_1^{\infty}{\frac{x}{1 + x^3}\,\mathrm{d}x} \end{align*}$. Thus, if $\displaystyle \begin{align*} \int_1^{\infty}{\frac{x}{1 + x^3}\,\mathrm{d}x} \end{align*}$ is convergent, so is $\displaystyle \begin{align*} \int_1^{\infty}{\frac{x\cos^2{(x)}}{1 +x^3}\,\mathrm{d}x} \end{align*}$. So looking at the new integral, we have
$\displaystyle \begin{align*} \int_1^{\infty}{\frac{x}{1 + x^3}\,\mathrm{d}x} &= \int_1^{\infty}{ \frac{x}{\left( 1 + x \right) \left( 1 - x + x^2 \right) } \,\mathrm{d}x } \end{align*}$
Now applying partial fractions, we have
$\displaystyle \begin{align*} \frac{A}{1 + x} + \frac{B\,x + C}{1 - x + x^2} &\equiv \frac{x}{ \left( 1 + x \right) \left( 1 - x + x^2 \right) } \\ \frac{A \left( 1 - x + x^2 \right) + \left( B\,x + C \right) \left( 1 + x \right) }{\left( 1 + x \right) \left( 1 - x + x^2 \right) } &\equiv \frac{x}{ \left( 1 + x \right) \left( 1 - x + x^2 \right) } \\ A \left( 1 - x + x^2 \right) + \left( B\,x + C \right) \left( 1 + x \right) &\equiv x \end{align*}$
Now let $\displaystyle \begin{align*} x = -1 \end{align*}$ and we find $\displaystyle \begin{align*} 3A = -1 \implies A = -\frac{1}{3} \end{align*}$. Substituting in gives
$\displaystyle \begin{align*} -\frac{1}{3} \left( 1 - x + x^2 \right) + \left( B\,x + C \right) \left( 1 + x \right) &\equiv x \\ -\frac{1}{3} + \frac{1}{3}x - \frac{1}{3}x^2 + B\,x + B\,x^2 + C + C\,x &\equiv x \\ \left( B - \frac{1}{3} \right) \, x^2 + \left( B + C + \frac{1}{3} \right) \, x + C - \frac{1}{3} &\equiv 0x^2 + 1x + 0 \end{align*}$
Equating coefficients we find $\displaystyle \begin{align*} C - \frac{1}{3} = 0 \implies C = \frac{1}{3} \end{align*}$ and $\displaystyle \begin{align*} B - \frac{1}{3} = 0 \implies B = \frac{1}{3} \end{align*}$. Thus
$\displaystyle \begin{align*} \int_1^{\infty}{\frac{x}{\left( 1 + x \right) \left( 1 - x + x^2 \right) }\,\mathrm{d}x} &= \int_1^{\infty}{ \frac{-\frac{1}{3}}{1 + x} + \frac{\frac{1}{3} x + \frac{1}{3}}{1 -x + x^2} \,\mathrm{d}x } \\ &= \frac{1}{3} \int_1^{\infty}{ \frac{1}{x^2 - x + 1} - \frac{1}{x +1} \, \mathrm{d}x } \\ &= \frac{1}{3} \int_1^{\infty}{ \frac{1}{ \left( x - \frac{1}{2} \right) ^2 + \frac{3}{4} } - \frac{1}{x + 1} \,\mathrm{d}x } \end{align*}$
Can you continue?