Impulse and maximum height of a particle

AI Thread Summary
A particle experiences an upward impulse from a force described by F = -8t² + 8t over 1 second. The impulse calculated is 4/3, which leads to a final velocity of v = 3m/4, assuming the mass is m. To find the maximum height, the formula h_max = v²/(2g) is used, resulting in h_max = 9m²/(32g). The discussion emphasizes using the impulse-momentum theorem rather than taking the derivative of the force. The final height expression is presented in terms of the particle's mass and gravitational acceleration.
thaalescosta
Messages
11
Reaction score
0

Homework Statement


A particle receives an impulse that lasts 1s, coming from a upwards vertical force. This force is given by the following equation: F = -8t²+8t.

What is the maximum height reached by the particle?

Homework Equations



F = -8t²+8t

The Attempt at a Solution



\int(-8t²+8t)dt = (-8t³ +12t²)/3

When t = 1s, I = 4/3. That's what I got as my impulse.

For the maximum height, I took the derivative of F and set it = 0, finding that t = 1/2

Now I don't know how to find the height with all the information I have.
 
Physics news on Phys.org
thaalescosta said:

Homework Statement


A particle receives an impulse that lasts 1s, coming from a upwards vertical force. This force is given by the following equation: F = -8t2+8t.

What is the maximum height reached by the particle?


Homework Equations



F = -8t²+8t

The Attempt at a Solution



\int(-8t^2+8t)dt = (-8t^3 +12t^2)/3

When t = 1s, I = 4/3. That's what I got as my impulse.

For the maximum height, I took the derivative of F and set it = 0, finding that t = 1/2

Now I don't know how to find the height with all the information I have.
Hello thaalescosta. Welcome to PF !

(Use ^2 for an eponent of 2 in Latex.)

There's no need to use the derivative of the force, F.

The change in momentum of the particle is equal to the impulse. (Impulse - Momentum Theorem)


Do you know the mass of the particle?
 
SammyS said:
Hello thaalescosta. Welcome to PF !

(Use ^2 for an eponent of 2 in Latex.)

Got it :)

There's no need to use the derivative of the force, F.

The change in momentum of the particle is equal to the impulse. (Impulse - Momentum Theorem)


Do you know the mass of the particle?

So I = ΔP = P_{f} - P_{i} = ∫Fdt, from i to f

My impulse turned out to be 4/3.

The mass of the particle wasn't given. I'm guessing that the answer will be in general terms.

If I = m.v, then v = 3m/4

And if the maximum height is
h_{max} = v²/2g
then
h_{max} = 9m²/32g


Does this make sense?
 
thaalescosta said:
Got it :)



So I = ΔP = P_{f} - P_{i} = ∫Fdt, from i to f

My impulse turned out to be 4/3.

The mass of the particle wasn't given. I'm guessing that the answer will be in general terms.

If I = m.v, then v = 3m/4

And if the maximum height is
h_{max} = v²/2g
then
h_{max} = 9m²/32g

Does this make sense?
Yes.

You probably should enclose the entire denominator in parentheses.

h_{max} = v^2/(2g)

h_{max} = 9m^2/(32g)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top