The clearest explanation I have seen of the cubic fprmula is in Euler's algebra book, which I summarize.
CUBIC FORMULA:
To solve a cubic equation, we start with a simplified one of form X^3 -3bX - c = 0, and again assume we want to find X as a sum X = (p+q). Plugging in gives (p+q)^3 = 3b(p+q) + c, and expanding gives p^3 + 3p^2q + 3pq^2 + q^3 = p^3 + q^3 + 3pq(p+q) =
3b(p+q) + c, and for this to hold means that pq = b, and c = p^3+q^3. Cubing the first of these gives p^3q^3 = b^3, and p^3+q^3 = c. Since we know b and c, we know both the sum and the product of the cubes p^3 and q^3. Can we find p^3 and q^3 from this? If so, then we could take cube roots and find p and q, and finally add them and get our root X = p+q.
Just recall in a quadratic equation of form X^2 - BX + C, that B and C are precisely the sum and product of the desired roots, and we can find those roots from B and C. I.e. we can find any two numbers when we know their sum and product, by solving a quadratic.
Since p^3+q^3 = c and p^3q^3 = b^3, the numbers p^3 and q^3, which can be used to give a solution X = p+q of our cubic, are solutions of the quadratic equation
t^2 -ct + b^3 = 0, where X^3 = 3bX + c.
e.g. to solve X^3 = 9X + 28, we have b = 3, c = 28, and so we solve t^2 -28t + 27 = 0. Here B^2-4C = 676, whose square root is 26, so we get t = (1/2)( 28 ± 26) = {27, 1}, for p^3 and q^3, so p,q are 1 and 3, and hence X=1+3 = 4 solves the cubic. Of course if we know about complex numbers, there are two more cube roots of 1 and 27, and we get two more complex roots. (Only two more because b = pq, so we must always have q = b/p, i.e. the choice of the cube root q is determined by the choice of p.)