Induction Proof Statement Help: x^n-y^n = (x-y)*sum

  • Thread starter Thread starter hicsuntdrac0ni
  • Start date Start date
  • Tags Tags
    Induction Proof
hicsuntdrac0ni
Messages
2
Reaction score
0

Homework Statement



https://sphotos-b.xx.fbcdn.net/hphotos-prn1/69668_10151632316928154_624610826_n.jpg x^n-y^n = (x-y)*(x^(n-1)+x^(n-2)*y+...+x*y^(n-2)+y^(n-1))

from Number Theory by George E. Andrews

Homework Equations


The Attempt at a Solution



(x^n-y^n)/(x-y) = the sum for the first n numbers and then i added (x*y^((n+1)-2)+y^((n+1)-1)) which should equal (x^(n+1)-y^(n+1))/(x-y) but i can't figure it out
 
Last edited by a moderator:
Physics news on Phys.org
That's not right. If you let ##n \rightarrow n+1##, you get
\begin{align*}
x^{n+1}-y^{n+1} &= (x-y)(x^{(n+1)-1}+x^{(n+1)-2}y+\cdots+xy^{(n+1)-2}+y^{(n+1)-1}) \\
&= (x-y)(x^n+x^{n-1}y+\cdots+xy^{n-1}+y^{n})
\end{align*} You tacked on the last two terms, but all of the other terms in the sum don't match.
 
vela said:
That's not right. If you let ##n \rightarrow n+1##, you get
\begin{align*}
x^{n+1}-y^{n+1} &= (x-y)(x^{(n+1)-1}+x^{(n+1)-2}y+\cdots+xy^{(n+1)-2}+y^{(n+1)-1}) \\
&= (x-y)(x^n+x^{n-1}y+\cdots+xy^{n-1}+y^{n})
\end{align*} You tacked on the last two terms, but all of the other terms in the sum don't match.

The expressions after the "+...+" are supposed to be the nth term so the n+1 term should be those last two with (n+1) substituted for (n) . Since the first nth terms are x^(n-1)+x^(n-2)*y+...+x*y^(n-2)+y^(n-1) and that is equal to x^n-y^n/(x-y) then I can substitute the x^(n-1)+x^(n-2)*y+...+x*y^(n-2)+y^(n-1) for x^n-y^n/(x-y) and then add x^(n+1)-y^(n+1)/(x-y)
 
I just showed you the first n-1 terms in the sum aren't what you think they're equal to.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top