Induction Proofs Homework: Prove ∑nj=0 n C r = 2n

  • Thread starter Thread starter Keen94
  • Start date Start date
  • Tags Tags
    Induction Proofs
AI Thread Summary
The discussion revolves around proving the equation ∑nj=0 n C r = 2n using mathematical induction. The proof starts by verifying the base case for n=1, confirming that the formula holds true. The inductive step assumes the formula is valid for k and demonstrates it for k+1 by manipulating combinations. Participants also discuss the significance of combinations in counting subsets and relate the formula to the binomial theorem, highlighting its historical discovery by Newton. The proof is deemed mostly correct, with suggestions for clearer notation in the sums.
Keen94
Messages
41
Reaction score
1

Homework Statement


Prove that ∑nj=0 n C r = 2n

Homework Equations


Defn. of a combination.
Defn. of mathematical induction.

The Attempt at a Solution


The formula is true for n=1
2=∑j=01 n C r
= 1 C 0 +1 C 1
=1 + 1
= 2
Now assume that for some k∈ℕ and 0≤ j ≤ k we have
2k = ∑kj=0 (k C j)
Then
(2)(2k)=2k+1= (2)kj=0 (k C j)

LHS= ∑kj=0 (k C j) + ∑kj=0 (k C j)

LHS= ∑kj=0 (k C j) + ∑k+1j=0 (k C j-1)

LHS= ∑kj=0 (k C j) + ∑kj=0 (k C j-1) + (k+1 C k+1)

LHS= ∑kj=0 [ (k C j) + (k Cj-1) ] +(k+1 C k+1)

LHS= ∑kj=0 (k+1 C j) + (k+1 C k+1)

LHS= ∑k+1j=0 (k+1 C j)

Does everything check? In addition, how was this formula discovered? How do people even find these things? Thanks again for the help guys and gals.
 
Last edited:
Physics news on Phys.org
Seems OK, although it would be cleaner to adjust the ## j=0 ## starting point in some of your sums - these work if you define ## _k C _j= 0## for ## j=-1 ## but if you are using that you should say so.

Otherwise I don't know how it was discovered but one way to see it directly is to note that ## _n C _k ## is the number of subsets of ## k ## elements of a set having ## n ## elements, and ## 2^n ## is the number of all subsets of a set having ## n ## elements.
 
Last edited:
wabbit said:
Seems OK, although it would be cleaner to adjust the ## j=0 ## starting point in some of your sums - these work if you define ## k C j= 0## for ## j=-1 ## but if you are using that you should say so.

Otherwise I don't know how it was discovered but one way to see it directly is to note that ## n C k ## is the number of subsets of ## k ## elements of a set having ## n ## elements, and ## 2^n ## is the number of all subsets of a set having ## n ## elements.
thanks for the reply. I forgot that nCr is the number of subsets of k elements of a set of n elements. I've seen other proofs for that.
 
Keen94 said:

Homework Statement


Prove that ∑nj=0 n C r = 2n

Homework Equations


Defn. of a combination.
Defn. of mathematical induction.

The Attempt at a Solution


The formula is true for n=1
2=∑j=01 n C r
= 1 C 0 +1 C 1
=1 + 1
= 2
Now assume that for some k∈ℕ and 0≤ j ≤ k we have
2k = ∑kj=0 (k C j)
Then
(2)(2k)=2k+1= (2)kj=0 (k C j)

LHS= ∑kj=0 (k C j) + ∑kj=0 (k C j)

LHS= ∑kj=0 (k C j) + ∑k+1j=0 (k C j-1)

LHS= ∑kj=0 (k C j) + ∑kj=0 (k C j-1) + (k+1 C k+1)

LHS= ∑kj=0 [ (k C j) + (k Cj-1) ] +(k+1 C k+1)

LHS= ∑kj=0 (k+1 C j) + (k+1 C k+1)

LHS= ∑k+1j=0 (k+1 C j)

Does everything check? In addition, how was this formula discovered? How do people even find these things? Thanks again for the help guys and gals.

People discover these thing by first discovering the binomial theorem
(1+x)^n = \sum_{k=0}^m {}_nC_k \, x^k
and then putting ##x = 1##.

Newton discovered that result in 1665, before age 25.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top