Inequality Challenge: Prove 3x2y2+x2z2+y2z2 ≤ 3

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality \[3(x^2y^2+x^2z^2+y^2z^2)-2xyz(x+y+z) \leq 3\] for all \(x, y, z\) in the interval \([0, 1]\). The focus is on mathematical reasoning and potential solutions to this inequality challenge.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Participants present the inequality to be proven, with some reiterating the same statement.
  • One participant expresses gratitude for a solution provided by another, indicating a collaborative atmosphere.
  • Multiple participants share their own solutions, suggesting various approaches to the problem.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus on a single solution, as multiple participants propose different solutions without resolving which is correct.

Contextual Notes

Details on the specific methods or reasoning behind the proposed solutions are not provided, leaving the discussion open-ended regarding the validity of each approach.

Who May Find This Useful

Individuals interested in mathematical inequalities, problem-solving techniques, or collaborative approaches to mathematical challenges may find this discussion relevant.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that

\[3(x^2y^2+x^2z^2+y^2z^2)-2xyz(x+y+z) \leq 3,\: \: \: \forall x,y,z \in \left [ 0;1 \right ]\]
 
Mathematics news on Phys.org
lfdahl said:
Prove, that

\[3(x^2y^2+x^2z^2+y^2z^2)-2xyz(x+y+z) \leq 3,\: \: \: \forall x,y,z \in \left [ 0;1 \right ]\]
my solution:
let :$A=3(x^2y^2+x^2z^2+y^2z^2)-2xyz(x+y+z) \leq 3(x^4+y^4+z^4)-6(\sqrt[3]{x^4y^4z^4})=B$
for each $x,y,z\in [0;1], B\geq 3\sqrt[3]{x^4y^4z^4}$
when:
$x=y=z=1$
$A=B=3$
 
Last edited:
Albert said:
my solution:
let :$A=3(x^2y^2+x^2z^2+y^2z^2)-2xyz(x+y+z) \leq 3(x^4+y^4+z^4)-6(\sqrt[3]{x^4y^4z^4})=B$
for each $x,y,z\in [0;1], B\geq 3\sqrt[3]{x^4y^4z^4}$
when:
$x=y=z=1$
$A=B=3$

Good job, Albert! Thankyou for the solution.Solution by other:

\[3(x^2y^2+x^2z^2+y^2z^2)-2xyz(x+y+z)= \\\\x^2y^2+x^2z^2+y^2z^2 + 2xy^2z-2x^2yz-2xyz^2 \\\\x^2y^2+x^2z^2+y^2z^2 + 2xyz^2-2x^2yz-2xy^2z \\\\x^2y^2+x^2z^2+y^2z^2 + 2x^2yz-2xy^2z-2xyz^2= \\\\(xy+yz-xz)^2+(xz+yz-xy)^2+(xy+xz-yz)^2\]

Now, since

\[xy+yz-xz = (x+z)y-xz \leq (x+z)-xz = (x-1)(1-z)+1\leq 1\]

and

\[xy+yz-xz \geq -xz \geq -1\]

we have

\[(xy+yz-xz)^2 \leq 1\]
By the same way$(xz+yz-xy)^2 \leq 1$ and $(xy+xz-yz)^2 \leq 1$, and we´re done.
 
Albert said:
my solution:
let :$A=3(x^2y^2+x^2z^2+y^2z^2)-2xyz(x+y+z) \leq 3(x^4+y^4+z^4)-6(\sqrt[3]{x^4y^4z^4})=B$
for each $x,y,z\in [0;1], B\geq 3\sqrt[3]{x^4y^4z^4}$
when:
$x=y=z=1$
$A=B=3$
another solution:
$x,y\in [0;1]\\
let:
0\leq A=xy+yz+zx\leq 3\\
0\leq B=x^2y^2+y^2z^2+z^2x^2\leq 3\\
0\leq C=xyz(x+y+z)\leq 3$
we have:$0\leq A^2=B+2C\leq 9$
now :$3B-2C\leq K---(*)$
we will find $max(K)>0$ satisfying $(*)$
$\rightarrow 0\leq 3B\leq 2C+K\leq 9$
for $x,y,z\in [0;1]$ , $A,B,C$ are increasing , it is clear $K=3$,
and we get $3(x^2y^2+y^2z^2+z^2x^2)-2xyz(x+y+z)\leq 3$
 
Last edited:
Albert said:
another solution:
$x,y\in [0;1]\\
let:
0\leq A=xy+yz+zx\leq 3\\
0\leq B=x^2y^2+y^2z^2+z^2x^2\leq 3\\
0\leq C=xyz(x+y+z)\leq 3$
we have:$0\leq A^2=B+2C\leq 9$
now :$3B-2C\leq K---(*)$
we will find $max(K)>0$ satisfying $(*)$
$\rightarrow 0\leq 3B\leq 2C+K\leq 9$
for $x,y,z\in [0;1]$ , $A,B,C$ are increasing , it is clear $K=3$,
and we get $3(x^2y^2+y^2z^2+z^2x^2)-2xyz(x+y+z)\leq 3$

Once again: Very good job, Albert!:cool:
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K