MHB Inequality involving Zeta Function

AI Thread Summary
The discussion revolves around proving the inequality for the Riemann Zeta function, specifically that for r > 2, the ratio of zeta functions satisfies a certain inequality. Participants suggest using the Euler product representation of the zeta function, which involves prime numbers, rather than the Dirichlet series for a more effective proof. They explore logarithmic transformations and Taylor expansions to compare terms, particularly focusing on the behavior of the zeta function at specific values. Despite attempts to derive the inequality, some participants express confusion about the steps and the implications of their findings. The conversation highlights the complexity of the proof and the mathematical intricacies involved in working with the zeta function.
Bibubo
Messages
13
Reaction score
0
Prove that for $r>2$ we have $$\frac{\zeta\left(r\right)}{\zeta\left(2r\right)}<\left(1+\frac{1}{2^{r}}\right)\frac{\left(1+3^{r}\right)^{2}}{1+3^{2r}}.$$ I've tried to write Zeta as Euler product but I haven't solve it.
 
Mathematics news on Phys.org
Bibubo said:
Prove that for $r>2$ we have $$\frac{\zeta\left(r\right)}{\zeta\left(2r\right)}<\left(1+\frac{1}{2^{r}}\right)\frac{\left(1+3^{r}\right)^{2}}{1+3^{2r}}.$$ I've tried to write Zeta as Euler product but I haven't solve it.

There is an explicit expression of the function in term of Dirichlet series...

$\displaystyle \frac{\zeta (r)}{\zeta (2\ r)} = \sum_{n=1}^{\infty} \frac{\mu^{2} (n)} {n^{r}}\ (1)$

... where $\mu(n)$ is the Moebious function. May be that the (1) is the right way but it requires some work...

Kind regards

$\chi$ $\sigma$
 
Ideally, a proof would probably involve the Euler product instead of the Dirichlet series

$$\frac{\zeta(s)}{\zeta(2s)} = \prod_p \left ( 1 + \frac1{p^s} \right )$$
 
mathbalarka said:
Ideally, a proof would probably involve the Euler product instead of the Dirichlet series

$$\frac{\zeta(s)}{\zeta(2s)} = \prod_p \left ( 1 + \frac1{p^s} \right )$$

I've tried the Euler product way, but I haven't found a solution.
 
I've been working on this problem, but no solution. Where did it come from? I observed that, since $\zeta(2)= \frac{\pi^2}{6}$ and $\zeta(4)=\frac{\pi^4}{90}$, we have

$$\frac{\zeta(2)}{\zeta(4)}=\frac{15}{\pi^2}\approx 1.51981$$

and

$(1+\frac{1}{4})\frac{(1+9)^2}{1+81}\approx 1.52439$

so the inequality also holds for $r=2$.
 
Writing the function as Euler product...

$\displaystyle \varphi(r)= \frac{\zeta(r)}{\zeta(2\ r)} = \prod_{p} (1 + \frac{1}{p^{r}}) = (1 + \frac{1}{2^{r}})\ (1 + \frac{1}{3^{r}})\ ... (1)$

... and taking the logarithm we obtain...

$\displaystyle \ln \frac{\varphi(r)}{1 + \frac{1}{2^{r}}} = \ln (1 + \frac{1}{3^{r}}) + ...\ (2)$

But is...

$\displaystyle \ln (1 + \frac{1}{3^{r}}) = \frac{1}{3^{r}} - \frac{1}{2\ 3^{2\ r}} + \frac{1}{3\ 3^{3\ r}} + ...\ (3)$

... and ...

$\displaystyle \ln \frac{(1 + \frac{1}{3^{r}})^{2}}{1 + \frac{1}{3^{2\ r}}} = \frac{2}{3^{r}} - \frac{1}{3^{2\ r}} + \frac{2}{3\ 3^{3\ r}} - ... - \frac{1}{3^{2\ r}} + \frac{1}{2\ 3^{4\ r}} - ... = \frac{2}{3^{r}} - \frac{2}{3^{2\ r}} + \frac{2}{3\ 3^{3\ r}} + ...\ (4)$

... so that comparing (3) and (4) we obtain that...

$\displaystyle \ln \frac{\varphi(r)}{1 + \frac{1}{2^{r}}} < \ln \frac{(1 + \frac{1}{3^{r}})^{2}}{1 + \frac{1}{3^{2\ r}}}\ (5)$

... what we intend to demonstrate...

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
Writing the function as Euler product...

$\displaystyle \varphi(r)= \frac{\zeta(r)}{\zeta(2\ r)} = \prod_{p} (1 + \frac{1}{p^{r}}) = (1 + \frac{1}{2^{r}})\ (1 + \frac{1}{3^{r}})\ ... (1)$

... and taking the logarithm we obtain...

$\displaystyle \ln \frac{\varphi(r)}{1 + \frac{1}{2^{r}}} = \ln (1 + \frac{1}{3^{r}}) + ...\ (2)$

But is...

$\displaystyle \ln (1 + \frac{1}{3^{r}}) = \frac{1}{3^{r}} - \frac{1}{2\ 3^{2\ r}} + \frac{1}{3\ 3^{3\ r}} + ...\ (3)$

... and ...

$\displaystyle \ln \frac{(1 + \frac{1}{3^{r}})^{2}}{1 + \frac{1}{3^{2\ r}}} = \frac{2}{3^{r}} - \frac{1}{3^{2\ r}} + \frac{2}{3\ 3^{3\ r}} - ... - \frac{1}{3^{2\ r}} + \frac{1}{2\ 3^{4\ r}} - ... = \frac{2}{3^{r}} - \frac{2}{3^{2\ r}} + \frac{2}{3\ 3^{3\ r}} + ...\ (4)$

... so that comparing (3) and (4) we obtain that...

$\displaystyle \ln \frac{\varphi(r)}{1 + \frac{1}{2^{r}}} < \ln \frac{(1 + \frac{1}{3^{r}})^{2}}{1 + \frac{1}{3^{2\ r}}}\ (5)$

... what we intend to demonstrate...

Kind regards

$\chi$ $\sigma$

Sorry but I don't see the point. You have something like $$\log\left(\frac{\left(1+3^{r}\right)^{2}}{1+3^{2r}}\right)=2\left(\underset{n\, odd}{\sum}\frac{1}{n}\,\frac{1}{3^{rn}}-2\underset{n\, even,\,4\nmid n}{\sum}\frac{1}{n}\,\frac{1}{3^{2rn}}\right)$$ because if $4\mid n$ we have a cancellation. Why is this bigger than $$\underset{p\geq3}{\sum}\log\left(1+\frac{1}{p^{r}}\right)?$$
 
Bibubo said:
Sorry but I don't see the point. You have something like $$\log\left(\frac{\left(1+3^{r}\right)^{2}}{1+3^{2r}}\right)=2\left(\underset{n\, odd}{\sum}\frac{1}{n}\,\frac{1}{3^{rn}}-2\underset{n\, even,\,4\nmid n}{\sum}\frac{1}{n}\,\frac{1}{3^{2rn}}\right)$$ because if $4\mid n$ we have a cancellation. Why is this bigger than $$\underset{p\geq3}{\sum}\log\left(1+\frac{1}{p^{r}}\right)?$$

I apologize for having understood the identity $\displaystyle \frac{(1 + 3^{r})^{2}}{1 + 3^{2\ r}}= \frac{(1 + \frac{1}{3^{r}})^{2}}{1 + \frac{1}{3^{2\ r}}}$, that permits to me to use the Taylor expansion $\displaystyle \ln (1 + \varepsilon) = \varepsilon - \frac{\varepsilon^{2}}{2} + \frac{\varepsilon^{3}}{3} - ...$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
I apologize for having understood the identity $\displaystyle \frac{(1 + 3^{r})^{2}}{1 + 3^{2\ r}}= \frac{(1 + \frac{1}{3^{r}})^{2}}{1 + \frac{1}{3^{2\ r}}}$, that permits to me to use the Taylor expansion $\displaystyle \ln (1 + \varepsilon) = \varepsilon - \frac{\varepsilon^{2}}{2} + \frac{\varepsilon^{3}}{3} - ...$...

Kind regards

$\chi$ $\sigma$

You can write as you told. In fact you have $$\frac{\left(1+3^{r}\right)}{1+3^{2r}}^{2}=\frac{\left(3^{r}\left(1+\frac{1}{3^{r}}\right)\right)^{2}}{3^{2r}\left(1+\frac{1}{3^{2r}}\right)}=\frac{\left(1+\frac{1}{3^{r}}\right)^{2}}{1+\frac{1}{3^{2r}}}$$ but I haven't understood how your proof can show my inequality.
 
Back
Top