Given the fact that the following inequality must hold;(adsbygoogle = window.adsbygoogle || []).push({});

x > y-1 For all y[tex] \in[/tex] ]0,1[ (an open interval)

and given the fact that one can choose y After one chooses x, can one then state that x > 0 holds?

My idea was to say that at least x >= 0 holds because:

1) Someone picks a negative x that is arbitrarily close to 0, say -0.000...001.

2) I can now choose a y from the interval ]0,1[, say 0.999999... so that y-1 > x

3) Therefore nobody can pick a negative x so that the inequality holds

However, I am even more unsure about the strict inequality x > 0. It seems unlikely to me that it holds.

How do you properly reason about these kind of things?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Inequality on open interval

**Physics Forums | Science Articles, Homework Help, Discussion**