Prove that [itex]$\mathbf{F}$^{\infty}[/itex] is infinite dimensional.(adsbygoogle = window.adsbygoogle || []).push({});

[itex]$\mathbf{F}$^{\infty}[/itex] is the vector space consisting of all sequences of elements of [itex]$\mathbf{F}$[/itex], and [itex]$\mathbf{F}$[/itex] denotes the real or complex numbers.

I was thinking of showing that no list spans [itex]$\mathbf{F}$^{\infty}[/itex], which would mean that it had no basis and therefore could not be finite dimensional.

I'm just not sure if this aproach works, and I'm also a little fuzzy on how to show this.

Another idea I had was to assume that [itex]$\mathbf{F}$^{\infty}[/itex]was finite dimensional and show a contradiction, but again I am unsure of how to actually show this.

Any ideas or input would be much appreciated !

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Infinite Dimensional Linear Algebra Proof

**Physics Forums | Science Articles, Homework Help, Discussion**