Infinite ring with exactly two non trivial maximal ideals

  • Thread starter Thread starter LikeMath
  • Start date Start date
  • Tags Tags
    Infinite Ring
LikeMath
Messages
62
Reaction score
0
Hey!

Is there an infinite ring with exactly two maximal ideals.

Thanks in advance
LiKeMath
 
Physics news on Phys.org
What about \mathbb{R}\times\mathbb{R}?
 
micromass said:
What about \mathbb{R}\times\mathbb{R}?
How is multiplication defined here?
 
Erland said:
How is multiplication defined here?

Pointswise: (a,b)\cdot (c,d)=(ac,bd).
 
i didn't check this, but i would try to take a ring and remove a lot of ideals by inverting elements. e.g. take the integers and look at all rational numbers that do not have factors of 2 or 3 in the bottom. then presumably the only maximal ideals left are (2) and (3).

another similar construction, in the ring of all continuous functions on [0,1], invert those that do not vanish at either 0 or 1. Then presumably the only maximal ideals left are those that vanish at one of those points.

I guess this also resembles micromass's example. I.e. take all continuous functions on the 2 point set {0,1} and then you have as maximal ideals the functions that vanish at 0, namely (0,t) and those that vanish at 1, namely (t,0).
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top