Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Infinite Series - Ratio Test

  1. Dec 3, 2005 #1
    Hi all!
    Here's something I'm having difficulty seeing:

    [tex]u_n > 0[/tex] and

    [tex]\frac{u_{n+1}}{u_n} \leq 1-\frac{2}{n} + \frac{1}{n^2}[/tex] if [tex]n \geq 2[/tex]

    Show that [tex]\sum{u_n}[/tex] is convergent.

    I'm not sure how to apply the ratio test to this.
    It looks like I would just take the limit.

    I get: [tex]lim_{n \rightarrow \infty} 1-\frac{2}{n} + \frac{1}{n^2} = 1[/tex]

    I'm not sure if I'm correct, but I could see this two ways.
    Since the above limit converges to 1, then the summation converges by the ratio test.
    Or, since the limit converges to one, the summation may converge or diverge.
    Is either statement correct? Am I on the right track?
    Thanks for the help.
  2. jcsd
  3. Dec 3, 2005 #2
    Got it...

    [tex]u_n=\frac{k}{(n-1)^2}[/tex] where k is a constant.

    This is just the series:

    [tex]k \sum{\frac{1}{n^2}}[/tex] which we know converges


  4. Dec 5, 2005 #3


    User Avatar
    Homework Helper

    Couldn't there exist other series which satisfy said inequality?

    Try Gauss' convergence test for series.
  5. Dec 18, 2005 #4
    Since the ratio test demands that the limit be less than 1, it looks as though the ratio test fails as Mr. Bailey have shown.
  6. Dec 18, 2005 #5
    He probably meant u_n <= k/(n - 1)^2.

    Let a_n = 1 - 2/n + 1/n^2.

    Then u_(n + 1) <= a_n * u_n <= a_n * a_(n - 1) * u_(n - 1), etc. Inductively, we have that u_(n + 1) <= a_n * a_(n - 1) * ... * a_1 * u_0.

    But as "luck" would have it, a_n * a_(n - 1) * ... * a_1 = 1/(n - 1)^2 (easy to show with induction), so the desired inequality follows. (N.B the details are probably not all correct. But that's relatively unimportant).
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook