pivoxa15
- 2,250
- 1
Homework Statement
The infinite series (-1)^n(x/n) from n=1 converges. But what is the specific value of it?
Gib Z said:\ln(1+x) = \sum^{\infty}_{n=0} \frac{(-1)^n}{n+1} x^{n+1}
\sum_{n=1}^{\infty} (-1)^n\frac{x}{n} = x\sum_{n=1}^{\infty} \frac{(-1)^n}{n}=x\log_e 2