- 1,191
- 683
Find ##u^2## if ##Rg=u.\sqrt{u^2-2gh}##.PeroK said:We can do even better. We let ##\alpha## be the direct angle to the target point. I.e. ##\tan \alpha = \frac{\Delta y}{\Delta x}##. Note that ##\frac {\Delta x}{\Delta y} = \tan(\frac \pi 2 - \alpha)##. Hence:
$$\theta = \frac \pi 4 + \frac \alpha 2 \ \ \ \ (0 \le \alpha \le \frac \pi 2)$$Moreover, we have:
$$\tan \theta = \tan \alpha + \sec \alpha$$$$v^2 = g\Delta x \tan \theta = g\Delta x(\tan \alpha + \sec \alpha)$$
Last solution applicable. Times through by ##\frac{R}{R}## to rework into the form given by @PeroK above.
Last edited: