I have been following this thread, somewhat intrigued by the approach of solving for t first. It is unexpected because we do not in the end care about the time to clear the obstacle.
In fact, nowhere in the thread do I see how this solving for t is done. It cannot be purely based on the two equations you mention since they include two other unknowns, v and θ, and different combinations of those lead to differenr values of t. So I have to assume that the range information was also used.
The more obvious approach, to me, is to eliminate t from the two equations, then eliminate v2 using the range equation. Does that turn out to be more complicated? Without seeing your method I cannot be sure, so I post mine for comparison.
Let x, y be the coordinates of the (25, 30) point and r be the range. For typing convenience I will abbreviate sin, cos and tan of the angle to s, c and τ.
1. y=v s t - ½gt2
2. x=v c t
3. gr=2v2sc
From 1 and 2, ##2v^2c^2=\frac{gx^2}{x\tau-y}##
From 3, ##gr=\tau\frac{gx^2}{x\tau-y}##
##rx\tau-ry=\tau x^2##
##\tau=\frac{ry}{x(r-x)}##
We can see that this has the correct behaviour as x→0 and as x→r. The trajectory approaches the vertical.