Inrush current in a transformer chain

Click For Summary
The discussion centers on the inrush current behavior in a transformer chain, specifically regarding XFMR1 and XFMR2 with open secondaries. It highlights that the inrush current may be influenced by factors such as leakage inductance, load circuitry, transformer core saturation, and winding capacitance. The consensus is that a more detailed model is necessary to accurately predict inrush current, as it can vary based on the initial magnetic state of the core. If the core is demagnetized when de-energized, no inrush current is expected in the secondary circuit. Overall, the complexity of the system makes precise predictions challenging.
Guineafowl
Messages
871
Reaction score
407
TL;DR
How does connecting two transformers in a chain affect the inrush current (at switch-on), as opposed to one transformer on its own?
1707921595020.png


This is the proposal, except the two middle voltages are 110V, not 12V.

Say the max switch-on inrush current of XFMR1 is xA with the secondary open, would the value change significantly in the above arrangement, with the secondary of XFMR2 open?
 
Engineering news on Phys.org
You have twice the leakage inductance, so the inrush may be a little lower.
 
berkeman said:
You have twice the leakage inductance, so the inrush may be a little lower.
Thanks.
 
Hard to answer without knowing what causes the inrush current.

- If it's from the load circuitry, the I'm with @berkeman, more series impedance buffer means less inrush magnitude, but longer duration (probably).

- If it's from the transformer core saturation because of residual magnetization, then it's just not predictable, at least to me. But, the same or maybe more.

- If it's from winding capacitance then you get an addition of some sort. Complicated by turns ratio and leakage inductance.

The short answer is that you need a much more detailed model, which is pretty difficult. As you drew it, I'd say there's no inrush surge in any case.
 
Last edited:
If the magnetic core was in demagnetized position when it was de-energized

then up to 100 A/m magnetic field the flux density is about 0 so E1=0 and E2=0 and I2=0 since the second loop E=0.

So, no inrush current is expected in the secondary.

0=U-(E+Z*Iinrush)

U is the supply voltage, E it is the electromotive force in the primary or secondary windings and Z is the short-circuit impedance.

E=Φ*ω Φ=Bfe*A [A= magnetic core cross section area].The current will rise in time from 0 to Iinrush .

If the magnetic core was in demagnetized position when it was de-energized then up to 100 A/m magnetic field the flux density is about 0 then Φ=0 so E1=0 and so E2. So, no inrush current is expected in the secondary.

Iinrush=(U-E)/Z [ if E1=0 then Iinrush=U/Z] ; Z=R+jXe Xe=leakage magnetic flux reactance Xe=Le*ω it is considered independent of main flux level.
 

Attachments

  • Magnetic flux density vs Field.jpg
    Magnetic flux density vs Field.jpg
    37.2 KB · Views: 78
  • Hard and soft magnet magnetic flux density.jpg
    Hard and soft magnet magnetic flux density.jpg
    40.5 KB · Views: 71
I am trying to understand how transferring electric from the powerplant to my house is more effective using high voltage. The suggested explanation that the current is equal to the power supply divided by the voltage, and hence higher voltage leads to lower current and as a result to a lower power loss on the conductives is very confusing me. I know that the current is determined by the voltage and the resistance, and not by a power capability - which defines a limit to the allowable...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
2
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
12K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K