Inscribed and circumscribed quadrilateral

  • Context: MHB 
  • Thread starter Thread starter Andrei1
  • Start date Start date
  • Tags Tags
    Inscribed
Click For Summary
SUMMARY

The discussion centers on the properties of a bicentric quadrilateral \(ABCD\), which is both inscribed in a circle of radius \(R\) and circumscribed around another circle. The area relationship established is \(S_{ABCD} = 3S_{KLMN}\), where \(KLMN\) is formed by the tangent points of the circumscribed circle. The angle \(\gamma\) between the diagonals \(AC\) and \(BD\) is also a critical aspect of the problem. Participants suggest that the quadrilateral may be a trapezium and emphasize the need to understand the area \(S\) for further calculations.

PREREQUISITES
  • Bicentric quadrilaterals
  • Properties of inscribed and circumscribed circles
  • Understanding of quadrilateral area calculations
  • Basic knowledge of geometric angles and diagonals
NEXT STEPS
  • Research the properties of bicentric quadrilaterals
  • Study the relationship between the areas of inscribed and circumscribed shapes
  • Learn about the formulas for calculating the area of quadrilaterals
  • Explore the implications of diagonal intersections in quadrilaterals
USEFUL FOR

Mathematicians, geometry students, and educators interested in advanced quadrilateral properties and area calculations will benefit from this discussion.

Andrei1
Messages
36
Reaction score
0
I would like to discuss the following problem.

The quadrilateral $$ABCD$$ is inscribed into a circle of given radius $$R.$$ And it is circumscribed to a circle. The tangent points from the second circle produce another quadrilateral $$KLMN$$ such that $$S_{ABCD}=3S_{KLMN}.$$ Also $$\gamma$$ is the angle between diagonals $$AC$$ and $$BD.$$ Find the area of $$ABCD.$$

I have no ideas. I wonder if I have to search any regularities of $$ABCD.$$ All given elements seem to me "distanced" from each other.
 
Mathematics news on Phys.org
Andrei said:
I would like to discuss the following problem.

The quadrilateral $$ABCD$$ is inscribed into a circle of given radius $$R.$$ And it is circumscribed to a circle. The tangent points from the second circle produce another quadrilateral $$KLMN$$ such that $$S_{ABCD}=3S_{KLMN}.$$ Also $$\gamma$$ is the angle between diagonals $$AC$$ and $$BD.$$ Find the area of $$ABCD.$$

I have no ideas. I wonder if I have to search any regularities of $$ABCD.$$ All given elements seem to me "distanced" from each other.

I can't give you a complete solution, sorry, but...

1. For symmetry reasons I assumed that the quadrilateral in question must be a trapezium.

2. The diagonals of ABCD and KLMN intersect in the same point.

3. Since I don't know what $$S_{ABCD}$$ means I can't give you any calculations.
 

Attachments

  • inumbeschr_trapez.png
    inumbeschr_trapez.png
    5.4 KB · Views: 104
earboth said:
1. For symmetry reasons I assumed that the quadrilateral in question must be a trapezium.
...
3. ... I don't know what $$S_{ABCD}$$ means ...
The red quadrilateral in your picture can also be circumscribed. $$S$$ is the area.
 
Andrei said:
I would like to discuss the following problem.

The quadrilateral $$ABCD$$ is inscribed into a circle of given radius $$R.$$ And it is circumscribed to a circle. The tangent points from the second circle produce another quadrilateral $$KLMN$$ such that $$S_{ABCD}=3S_{KLMN}.$$ Also $$\gamma$$ is the angle between diagonals $$AC$$ and $$BD.$$ Find the area of $$ABCD.$$

I have no ideas. I wonder if I have to search any regularities of $$ABCD.$$ All given elements seem to me "distanced" from each other.
A quadrilateral of this kind is called bicentric. You might find some useful information at Bicentric quadrilateral - Wikipedia, the free encyclopedia.
 

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
12K