MHB Integral challenge ∫ln2(1+x^(−1))dx

Click For Summary
The discussion focuses on evaluating the definite integral of ln²(1+x⁻¹) from 0 to 1. Participants express appreciation for June29's correct solution and effective approach to the problem. The conversation highlights the importance of collaborative problem-solving in integral calculus. Overall, the thread emphasizes the successful evaluation of the integral and acknowledges contributions from participants. The integral evaluation showcases the community's engagement and expertise in mathematical discussions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the definite integral

$$\int_{0}^{1} \ln^2(1+x^{-1}) \,dx$$
 
Mathematics news on Phys.org
Starting with integration by parts, we have:

$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$​

It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps

$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $​

Then using the Maclaurin expansion of $\ln(1-x)$ we have

$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$​

Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $
 
June29 said:
Starting with integration by parts, we have:

$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$​

It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps

$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $​

Then using the Maclaurin expansion of $\ln(1-x)$ we have

$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$​

Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $

Thankyou for your participation and a correct result, June29! Good job!(Happy)

Would you please explain the following step? Thankyou in advance!:

\[x \mapsto 1-x \Rightarrow 2\int_{0}^{1}\frac{\ln x}{1+x}dx \mapsto \int_{0}^{1}\frac{\ln (1-x)}{x}dx\]

I have a problem understanding the change of the denominator of the integrand:
- from $1+x$ to $x$. I´d expect: from $1+x$ to $2-x$?
 
lfdahl said:
Thankyou for your participation and a correct result, June29! Good job!(Happy)

Would you please explain the following step? Thankyou in advance!:

\[x \mapsto 1-x \Rightarrow 2\int_{0}^{1}\frac{\ln x}{1+x}dx \mapsto \int_{0}^{1}\frac{\ln (1-x)}{x}dx\]

I have a problem understanding the change of the denominator of the integrand:
- from $1+x$ to $x$. I´d expect: from $1+x$ to $2-x$?
You're right! I wrote down the wrong map (Rofl) I've since spotted a different way by using

$\displaystyle \int_0^1 x^k \ln(x) \,{dx} = -\frac{1}{(1+k)^2}$ (which can be proven by integration by parts for example).

$\displaystyle \int_0^{1} \frac{\ln(x)}{1+x}\,{dx} = \int_0^{1}\ln(x)\sum_{k \ge 0}(-1)^kx^{k}\,{dx} = \sum_{k\ge0} (-1)^k\int_0^{1}x^k\ln(x)\,{dx} = -\sum_{k \ge 0}\frac{(-1)^k}{(1+k)^2}$

$= \displaystyle - \left(1-\frac{1}{2}\right)\sum_{k \ge 0} \frac{1}{(k+1)^2} = -\frac{\pi^2}{12}$ giving us $\displaystyle \mathcal{I} = 2\ln^2(2) -
2\left(-\frac{\pi^2}{12}\right) = 2\ln^2(2)+\frac{\pi^2}{6}.$
 
June29 said:
You're right! I wrote down the wrong map (Rofl) I've since spotted a different way by using

$\displaystyle \int_0^1 x^k \ln(x) \,{dx} = -\frac{1}{(1+k)^2}$ (which can be proven by integration by parts for example).

$\displaystyle \int_0^{1} \frac{\ln(x)}{1+x}\,{dx} = \int_0^{1}\ln(x)\sum_{k \ge 0}(-1)^kx^{k}\,{dx} = \sum_{k\ge0} (-1)^k\int_0^{1}x^k\ln(x)\,{dx} = -\sum_{k \ge 0}\frac{(-1)^k}{(1+k)^2}$

$= \displaystyle - \left(1-\frac{1}{2}\right)\sum_{k \ge 0} \frac{1}{(k+1)^2} = -\frac{\pi^2}{12}$ giving us $\displaystyle \mathcal{I} = 2\ln^2(2) -
2\left(-\frac{\pi^2}{12}\right) = 2\ln^2(2)+\frac{\pi^2}{6}.$
A fine solution path indeed! Thankyou June29!