MHB Integral challenge ∫ln2(1+x^(−1))dx

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the definite integral

$$\int_{0}^{1} \ln^2(1+x^{-1}) \,dx$$
 
Mathematics news on Phys.org
Starting with integration by parts, we have:

$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$​

It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps

$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $​

Then using the Maclaurin expansion of $\ln(1-x)$ we have

$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$​

Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $
 
June29 said:
Starting with integration by parts, we have:

$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$​

It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps

$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $​

Then using the Maclaurin expansion of $\ln(1-x)$ we have

$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$​

Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $

Thankyou for your participation and a correct result, June29! Good job!(Happy)

Would you please explain the following step? Thankyou in advance!:

\[x \mapsto 1-x \Rightarrow 2\int_{0}^{1}\frac{\ln x}{1+x}dx \mapsto \int_{0}^{1}\frac{\ln (1-x)}{x}dx\]

I have a problem understanding the change of the denominator of the integrand:
- from $1+x$ to $x$. I´d expect: from $1+x$ to $2-x$?
 
lfdahl said:
Thankyou for your participation and a correct result, June29! Good job!(Happy)

Would you please explain the following step? Thankyou in advance!:

\[x \mapsto 1-x \Rightarrow 2\int_{0}^{1}\frac{\ln x}{1+x}dx \mapsto \int_{0}^{1}\frac{\ln (1-x)}{x}dx\]

I have a problem understanding the change of the denominator of the integrand:
- from $1+x$ to $x$. I´d expect: from $1+x$ to $2-x$?
You're right! I wrote down the wrong map (Rofl) I've since spotted a different way by using

$\displaystyle \int_0^1 x^k \ln(x) \,{dx} = -\frac{1}{(1+k)^2}$ (which can be proven by integration by parts for example).

$\displaystyle \int_0^{1} \frac{\ln(x)}{1+x}\,{dx} = \int_0^{1}\ln(x)\sum_{k \ge 0}(-1)^kx^{k}\,{dx} = \sum_{k\ge0} (-1)^k\int_0^{1}x^k\ln(x)\,{dx} = -\sum_{k \ge 0}\frac{(-1)^k}{(1+k)^2}$

$= \displaystyle - \left(1-\frac{1}{2}\right)\sum_{k \ge 0} \frac{1}{(k+1)^2} = -\frac{\pi^2}{12}$ giving us $\displaystyle \mathcal{I} = 2\ln^2(2) -
2\left(-\frac{\pi^2}{12}\right) = 2\ln^2(2)+\frac{\pi^2}{6}.$
 
June29 said:
You're right! I wrote down the wrong map (Rofl) I've since spotted a different way by using

$\displaystyle \int_0^1 x^k \ln(x) \,{dx} = -\frac{1}{(1+k)^2}$ (which can be proven by integration by parts for example).

$\displaystyle \int_0^{1} \frac{\ln(x)}{1+x}\,{dx} = \int_0^{1}\ln(x)\sum_{k \ge 0}(-1)^kx^{k}\,{dx} = \sum_{k\ge0} (-1)^k\int_0^{1}x^k\ln(x)\,{dx} = -\sum_{k \ge 0}\frac{(-1)^k}{(1+k)^2}$

$= \displaystyle - \left(1-\frac{1}{2}\right)\sum_{k \ge 0} \frac{1}{(k+1)^2} = -\frac{\pi^2}{12}$ giving us $\displaystyle \mathcal{I} = 2\ln^2(2) -
2\left(-\frac{\pi^2}{12}\right) = 2\ln^2(2)+\frac{\pi^2}{6}.$
A fine solution path indeed! Thankyou June29!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top