Starting with integration by parts, we have:
$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$
It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps
$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $
Then using the Maclaurin expansion of $\ln(1-x)$ we have
$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$
Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $