Integral challenge ∫ln2(1+x^(−1))dx

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Challenge Integral
Click For Summary

Discussion Overview

The discussion revolves around evaluating the definite integral of the function ln²(1+x⁻¹) from 0 to 1. The focus is on the mathematical reasoning and solution approaches related to this integral.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 presents the integral to be evaluated, specifically ∫₀¹ ln²(1+x⁻¹) dx.
  • Posts 2, 3, and 4 express appreciation for a participant's contributions, indicating that a solution path was followed, but do not provide specific details on the methods or results discussed.

Areas of Agreement / Disagreement

Participants express agreement on the correctness of a solution provided by June29, but the details of the solution and any potential disagreements or alternative approaches are not discussed.

Contextual Notes

No specific limitations or unresolved mathematical steps are mentioned in the posts.

Who May Find This Useful

Readers interested in integral calculus, particularly those exploring logarithmic integrals and solution techniques in mathematical reasoning.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the definite integral

$$\int_{0}^{1} \ln^2(1+x^{-1}) \,dx$$
 
Physics news on Phys.org
Starting with integration by parts, we have:

$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$​

It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps

$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $​

Then using the Maclaurin expansion of $\ln(1-x)$ we have

$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$​

Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $
 
June29 said:
Starting with integration by parts, we have:

$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$​

It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps

$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $​

Then using the Maclaurin expansion of $\ln(1-x)$ we have

$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$​

Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $

Thankyou for your participation and a correct result, June29! Good job!(Happy)

Would you please explain the following step? Thankyou in advance!:

\[x \mapsto 1-x \Rightarrow 2\int_{0}^{1}\frac{\ln x}{1+x}dx \mapsto \int_{0}^{1}\frac{\ln (1-x)}{x}dx\]

I have a problem understanding the change of the denominator of the integrand:
- from $1+x$ to $x$. I´d expect: from $1+x$ to $2-x$?
 
lfdahl said:
Thankyou for your participation and a correct result, June29! Good job!(Happy)

Would you please explain the following step? Thankyou in advance!:

\[x \mapsto 1-x \Rightarrow 2\int_{0}^{1}\frac{\ln x}{1+x}dx \mapsto \int_{0}^{1}\frac{\ln (1-x)}{x}dx\]

I have a problem understanding the change of the denominator of the integrand:
- from $1+x$ to $x$. I´d expect: from $1+x$ to $2-x$?
You're right! I wrote down the wrong map (Rofl) I've since spotted a different way by using

$\displaystyle \int_0^1 x^k \ln(x) \,{dx} = -\frac{1}{(1+k)^2}$ (which can be proven by integration by parts for example).

$\displaystyle \int_0^{1} \frac{\ln(x)}{1+x}\,{dx} = \int_0^{1}\ln(x)\sum_{k \ge 0}(-1)^kx^{k}\,{dx} = \sum_{k\ge0} (-1)^k\int_0^{1}x^k\ln(x)\,{dx} = -\sum_{k \ge 0}\frac{(-1)^k}{(1+k)^2}$

$= \displaystyle - \left(1-\frac{1}{2}\right)\sum_{k \ge 0} \frac{1}{(k+1)^2} = -\frac{\pi^2}{12}$ giving us $\displaystyle \mathcal{I} = 2\ln^2(2) -
2\left(-\frac{\pi^2}{12}\right) = 2\ln^2(2)+\frac{\pi^2}{6}.$
 
June29 said:
You're right! I wrote down the wrong map (Rofl) I've since spotted a different way by using

$\displaystyle \int_0^1 x^k \ln(x) \,{dx} = -\frac{1}{(1+k)^2}$ (which can be proven by integration by parts for example).

$\displaystyle \int_0^{1} \frac{\ln(x)}{1+x}\,{dx} = \int_0^{1}\ln(x)\sum_{k \ge 0}(-1)^kx^{k}\,{dx} = \sum_{k\ge0} (-1)^k\int_0^{1}x^k\ln(x)\,{dx} = -\sum_{k \ge 0}\frac{(-1)^k}{(1+k)^2}$

$= \displaystyle - \left(1-\frac{1}{2}\right)\sum_{k \ge 0} \frac{1}{(k+1)^2} = -\frac{\pi^2}{12}$ giving us $\displaystyle \mathcal{I} = 2\ln^2(2) -
2\left(-\frac{\pi^2}{12}\right) = 2\ln^2(2)+\frac{\pi^2}{6}.$
A fine solution path indeed! Thankyou June29!
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K