MHB Integral challenge ∫ln2(1+x^(−1))dx

Click For Summary
The discussion focuses on evaluating the definite integral of ln²(1+x⁻¹) from 0 to 1. Participants express appreciation for June29's correct solution and effective approach to the problem. The conversation highlights the importance of collaborative problem-solving in integral calculus. Overall, the thread emphasizes the successful evaluation of the integral and acknowledges contributions from participants. The integral evaluation showcases the community's engagement and expertise in mathematical discussions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the definite integral

$$\int_{0}^{1} \ln^2(1+x^{-1}) \,dx$$
 
Mathematics news on Phys.org
Starting with integration by parts, we have:

$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$​

It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps

$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $​

Then using the Maclaurin expansion of $\ln(1-x)$ we have

$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$​

Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $
 
June29 said:
Starting with integration by parts, we have:

$\begin{aligned}\displaystyle \mathcal{I} & = \int_{0}^{1} \ln^2(1+x^{-1}) \,dx \\& = \int_{0}^{1} (x)'\ln^2(1+x^{-1}) \,dx \\&= x \ln^2(1+x^{-1})\bigg|_{x=0}^{1}+2\int_0^{1}\frac{ \ln(1+1/x)}{1+x}\,{dx} \\& = \ln^2(2)+2\int_0^{1}\frac{ \ln(1+x)}{1+x}\,{dx}-2\int_0^{1}\frac{ \ln(x)}{1+x}\,{dx} \\& = \ln^2(2)+\ln^2(1+x)\bigg|_{x=0}^{1}-2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \\& = 2\ln^2(2)-2 \int_0^{1}\frac{\ln(x)}{1+x}\,{dx}\end{aligned}$​

It remains to calculate the last integral. Let $x \mapsto 1-x$ which maps

$\displaystyle 2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} \mapsto \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} $​

Then using the Maclaurin expansion of $\ln(1-x)$ we have

$\begin{aligned}2\int_0^{1}\frac{\ln(x)}{1+x}\,{dx} & = \int_0^{1}\frac{\ln(1-x)}{x}\,{dx} \\& = -\int_0^{1} \sum_{k \ge 0}\frac{x^{k}}{k+1} \,{dx} \\& = -\sum_{k \ge 0}\int_0^{1} \frac{x^{k}}{k+1}\,{dx} \\& = -\sum_{k \ge 0}\frac{1}{(k+1)^2} \\& = - \frac{\pi^2}{6}\end{aligned}$​

Therefore we have $\displaystyle \mathcal{I} = 2\ln^2(2)+\frac{\pi^2}{6}. $

Thankyou for your participation and a correct result, June29! Good job!(Happy)

Would you please explain the following step? Thankyou in advance!:

\[x \mapsto 1-x \Rightarrow 2\int_{0}^{1}\frac{\ln x}{1+x}dx \mapsto \int_{0}^{1}\frac{\ln (1-x)}{x}dx\]

I have a problem understanding the change of the denominator of the integrand:
- from $1+x$ to $x$. I´d expect: from $1+x$ to $2-x$?
 
lfdahl said:
Thankyou for your participation and a correct result, June29! Good job!(Happy)

Would you please explain the following step? Thankyou in advance!:

\[x \mapsto 1-x \Rightarrow 2\int_{0}^{1}\frac{\ln x}{1+x}dx \mapsto \int_{0}^{1}\frac{\ln (1-x)}{x}dx\]

I have a problem understanding the change of the denominator of the integrand:
- from $1+x$ to $x$. I´d expect: from $1+x$ to $2-x$?
You're right! I wrote down the wrong map (Rofl) I've since spotted a different way by using

$\displaystyle \int_0^1 x^k \ln(x) \,{dx} = -\frac{1}{(1+k)^2}$ (which can be proven by integration by parts for example).

$\displaystyle \int_0^{1} \frac{\ln(x)}{1+x}\,{dx} = \int_0^{1}\ln(x)\sum_{k \ge 0}(-1)^kx^{k}\,{dx} = \sum_{k\ge0} (-1)^k\int_0^{1}x^k\ln(x)\,{dx} = -\sum_{k \ge 0}\frac{(-1)^k}{(1+k)^2}$

$= \displaystyle - \left(1-\frac{1}{2}\right)\sum_{k \ge 0} \frac{1}{(k+1)^2} = -\frac{\pi^2}{12}$ giving us $\displaystyle \mathcal{I} = 2\ln^2(2) -
2\left(-\frac{\pi^2}{12}\right) = 2\ln^2(2)+\frac{\pi^2}{6}.$
 
June29 said:
You're right! I wrote down the wrong map (Rofl) I've since spotted a different way by using

$\displaystyle \int_0^1 x^k \ln(x) \,{dx} = -\frac{1}{(1+k)^2}$ (which can be proven by integration by parts for example).

$\displaystyle \int_0^{1} \frac{\ln(x)}{1+x}\,{dx} = \int_0^{1}\ln(x)\sum_{k \ge 0}(-1)^kx^{k}\,{dx} = \sum_{k\ge0} (-1)^k\int_0^{1}x^k\ln(x)\,{dx} = -\sum_{k \ge 0}\frac{(-1)^k}{(1+k)^2}$

$= \displaystyle - \left(1-\frac{1}{2}\right)\sum_{k \ge 0} \frac{1}{(k+1)^2} = -\frac{\pi^2}{12}$ giving us $\displaystyle \mathcal{I} = 2\ln^2(2) -
2\left(-\frac{\pi^2}{12}\right) = 2\ln^2(2)+\frac{\pi^2}{6}.$
A fine solution path indeed! Thankyou June29!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K