latentcorpse
- 1,411
- 0
we have \mathbf{A(r)}=\frac{\mu_0 I}{4 \pi} \int dV' \mathbf{\frac{dl'}{|r-r'|}}
i need to show that A_x=-\frac{\mu_0 I}{4 \pi} \int_{-x}^x \frac{d \xi}{(\xi^2 + y^2 + z^2)^{-\frac{1}{2}}}
i said |\mathbf{r-r'}|=\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}
then if we pick \mathbf{r'} on the x axis, y'=z'=0
then we let \xi=x-x' \Rightarrow dl'=-d \xi
so everything's looking good up till now but i can't get the limits on the integration to come out right.
x' goes between -\infty and +\infty btw
any ideas?
i need to show that A_x=-\frac{\mu_0 I}{4 \pi} \int_{-x}^x \frac{d \xi}{(\xi^2 + y^2 + z^2)^{-\frac{1}{2}}}
i said |\mathbf{r-r'}|=\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}
then if we pick \mathbf{r'} on the x axis, y'=z'=0
then we let \xi=x-x' \Rightarrow dl'=-d \xi
so everything's looking good up till now but i can't get the limits on the integration to come out right.
x' goes between -\infty and +\infty btw
any ideas?