- #1
- 16
- 1
Homework Statement
If ##a \neq 0##, evaluate the integral
$$\int \frac {dx} {a~\sin^2~x + b~\sin~x~\cos~x + c~\cos^2~x}$$
(Hint: Make the substitution ##u = \tan x## and consider separately the cases where
##b^2 - 4ac## is positive, zero, or negative.)
The Attempt at a Solution
$$\int \frac {dx} {a~\sin^2~x + b~\sin~x~\cos~x + c~\cos^2~x}$$
$$\int \frac {\sec^2~x} {\sec^2~x} \frac {dx} {a~\sin^2~x + b~\sin~x~\cos~x + c~\cos^2~x}$$
$$\int \frac {\sec^2~x~dx} {a~\tan^2~x + b~\tan~x + c}$$
Let ##u = \tan~x \Rightarrow dx = \frac {du} {\sec^2~x}##
$$\int \frac {sec^2~x} {au^2 + bu + c} \frac {du} {\sec^2~x}$$
$$\begin{equation} \tag{1} \int \frac {du} {au^2 + bu + c} \end{equation}$$
$$\frac 1 a \int \frac {du} {u^2 + \frac b a u + \frac c a}$$
$$\frac 1 a \int \frac {du} {u^2 + \frac b a u + \left( \frac b {2a} \right)^2 - \left(\frac b {2a} \right)^2 + \frac c a}$$
$$\frac 1 a \int \frac {du} { \left (u + \frac b {2a} \right)^2 - \frac {b^2 - 4ac} {(2a)^2}}$$
$$\frac 1 a \int \frac {du} { \left(u + \frac b {2a} \right)^2 - \left (\frac {\sqrt {b^2 - 4ac}} {2a} \right)^2}$$
$$\frac 1 a \frac 1 {\frac {2 \sqrt {b^2 - 4ac} } {2a}} \ln \left| \frac {u + \frac b {2a} - \frac {\sqrt {b^2 - 4ac}} {2a}} {u + \frac b {2a} + \frac {\sqrt {b^2 - 4ac}} {2a}} \right| + C$$
$$\frac 1 {\sqrt {b^2 - 4ac}} \ln \left| \frac {u + \frac {b - \sqrt {b^2 - 4ac}} {2a}} {u + \frac {b + \sqrt {b^2 - 4ac}} {2a}} \right| + C$$
$$\frac 1 {\sqrt {b^2 - 4ac}} \ln \left| \frac {\tan x + \frac {b - \sqrt {b^2 - 4ac}} {2a}} {\tan x + \frac {b + \sqrt {b^2 - 4ac}} {2a}} \right| + C$$
where ##b^2 - 4ac## is positive which agrees with the answers I obtained with online calculators (wolframalpha and integral-calculator.)
In the case where ##b^2 - 4ac = 0##, we have ##c = \frac {b^2} {4a}##. Substituting c in (1), we have
$$\int \frac {du} {au^2 + bu + \frac {b^2} {4a}}$$
$$\frac 1 a \int \frac {du} {u^2 + \frac b a u + \frac {b^2} {4a^2}}$$
$$\frac 1 a \int \frac {du} {u^2 + \frac b a u + \left( \frac b {2a} \right)^2}$$
$$\frac 1 a \int \frac {du} {\left( u + \frac b {2a} \right)^2}$$
Let ##v = u + \frac b {2a} \Rightarrow du = dv##
$$\frac 1 a \int \frac {dv} {v^2}$$
$$\frac {-1} {av} + D$$
$$\frac {-1} {a \left( u + \frac b {2a} \right)} + D$$
$$\frac {-2} {2au + b} + D$$
$$\frac {-2} {2a \tan x + b} + D$$
Is my solution for when ##b^2 - 4ac = 0## correct?
How do I go about evaluating the integral when ##b^2 - 4ac < 0##? Looking at (1), the denominator can't be factored in this case. Trying Weiserstrass substitution didn't seem to work but maybe I didn't persist long enough.
Any feedback on my form or how I went about evaluating the integral would be appreciated.