In my class I taught this as a trig substitution. I.e. we know (at least) two basic trig identities with squares in them: sin^2+cos^2=1, and 1+tan^2 = sec^2, (obtained by dividing the first one by cos^2). the first one gives cos^2 = 1-sin^2, and so we have identities that can be used to simplify 1-x^2 as well as 1+x^2, by putting x = sin(t) or x = tan(t).
To integrate dx/(1+x^2), we put x = tan(t), and dx = sec^2(t)dt, and get the integral as t. and since x= tan(t), we have t = arctan(x).
in your case you have 2+x^2 which looks like 1+tan^2, except off by a constant. now constant multipliers do no harm so you could try setting 2+x^2 = c(1+tan^2(t)), and go from there.
complex methods are also fun and illuminating, but sometimes may give non real answers. of course if you know e^it = cos(t) + i sin (t), you can often find your way back.
In fact when you look at complex numbers and complex path integrals, log and arctan are somewhat the same, except for interchanging i and -i with 0 and infinity, since integration of 1/(1+z^2) behaves the same as you go around i and -i as integrating 1/z does as you go around 0 and infinity!