tworitdash
- 104
- 25
- TL;DR
- For implementing a mode-matching technique in EM simulation, I want to get a closed-form equation of the integral of [tex] \int_{0}^{r} \frac{1}{\rho} J_m(a\rho) J_n(b\rho) d\rho [/tex]
I can only find a solution to \int_{0}^{r} \frac{1}{\rho} J_m(a\rho) J_n(b\rho) d\rho
with the Lommel's integral . On my last thread (here), I got an idea about how to execute this when m = n (Bessel functions with the same order) using Lommel's integrals (Using some properties of Bessel functions.). However, all that I get with the problem having Bessel's functions with different orders is some hyper-geometric functions. Is there any other way to solve it when m != nHere, J_m is the Bessel function of the first kind of order m.
with the Lommel's integral . On my last thread (here), I got an idea about how to execute this when m = n (Bessel functions with the same order) using Lommel's integrals (Using some properties of Bessel functions.). However, all that I get with the problem having Bessel's functions with different orders is some hyper-geometric functions. Is there any other way to solve it when m != nHere, J_m is the Bessel function of the first kind of order m.