Integral of a vector valued function

Lucid Dreamer
Messages
25
Reaction score
0
I came across this integral of a vector valued function.
\int \mathbf A(t) \vec{w(t)} dt = \int \mathbf B(t).
I want to isolate \vec{w(t)} and so I multiply by \left (\int \mathbf A(t) dt \right)^{-1} on both sides.
\left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf A(t) \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt

I thought the correct form would be
\int \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt.

But it turns out I get the right answer if I take
\vec{w(t)} = \left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf B(t) dt.

Can anyone show why the second form is correct?
 
Last edited:
Physics news on Phys.org
Both formulas are wrong. Check it with ##\omega(t)=t^2## and ##A(t)=e^t##. All we have is the integration by parts: ##\displaystyle{\int } A(t)\omega(t)dt = \left(\int A(t)dt\right) \omega(t) - \int \left(\int A(t)dt\right)\omega'(t)dt##
 

Similar threads

Replies
6
Views
2K
Replies
13
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
6
Views
1K
Replies
5
Views
3K
Replies
3
Views
3K
Back
Top