Lucid Dreamer
- 25
- 0
I came across this integral of a vector valued function.
\int \mathbf A(t) \vec{w(t)} dt = \int \mathbf B(t).
I want to isolate \vec{w(t)} and so I multiply by \left (\int \mathbf A(t) dt \right)^{-1} on both sides.
\left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf A(t) \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt
I thought the correct form would be
\int \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt.
But it turns out I get the right answer if I take
\vec{w(t)} = \left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf B(t) dt.
Can anyone show why the second form is correct?
\int \mathbf A(t) \vec{w(t)} dt = \int \mathbf B(t).
I want to isolate \vec{w(t)} and so I multiply by \left (\int \mathbf A(t) dt \right)^{-1} on both sides.
\left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf A(t) \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt
I thought the correct form would be
\int \vec{w(t)} dt = \left (\int \mathbf A(t) dt\right)^{-1} \int \mathbf B(t) dt.
But it turns out I get the right answer if I take
\vec{w(t)} = \left (\int \mathbf A(t) dt \right)^{-1} \int \mathbf B(t) dt.
Can anyone show why the second form is correct?
Last edited: