I Integral of f(x)*x: Is It Possible?

  • I
  • Thread starter Thread starter ddddd28
  • Start date Start date
  • Tags Tags
    integral
ddddd28
Messages
73
Reaction score
4
Is it possible to do an integral of f(x)*x without knowing f(x)?
 
Physics news on Phys.org
ddddd28 said:
Is it possible to do an integral of f(x)*x without knowing f(x)?

If you know ##f(x)##, it is sometimes not even possible to express ##\int f(x) dx## using standard functions so you can expect this is also the case for ##xf(x)##, certainly when you don't know ##f(x)##!
 
Using integration by parts and letting u = x and dv = f(x)dx, we get

∫xf(x)dx = ∫udv = uv - ∫vdu = x∫f(x)dx - ∫f(x)dx​

which is probably the most that can be said about the matter.
 
zinq said:
Using integration by parts and letting u = x and dv = f(x)dx, we get

∫xf(x)dx = ∫udv = uv - ∫vdu = x∫f(x)dx - ∫f(x)dx​

which is probably the most that can be said about the matter.
I am afraid that you've made a mistake.
$$ ∫vdu ≠ ∫f(x)dx $$
you defined dv = f(x)dx, so it should be v = ∫ f(x)dx
 
  • Like
Likes member 587159
Thank you for the correction! I should have written:

xf(w)dw = ∫xudv = uv]x - ∫xvdu = x∫xf(w)dw - ∫x(∫zf(w)dw)dz,​

or maybe I should have just left it at

∫f(w)dw = uv - ∫vdu​

and kept things simple.
 
zinq said:
Thank you for the correction! I should have written:

xf(w)dw = ∫xudv = uv]x - ∫xvdu = x∫xf(w)dw - ∫x(∫zf(w)dw)dz,​

or maybe I should have just left it at

∫f(w)dw = uv - ∫vdu​

and kept things simple.

What was wrong with ##x## as the variable in the first place?
 
"What was wrong with x as the variable in the first place?"

To be technically correct, it's best to express an integral that ends up as being a function of (say) x in terms of integrating some variable that is not x (it doesn't matter which one). That's called a "dummy variable".

This is just like writing a summation in terms of an arbitrary variable whose choice does not matter:

5
Σ K = 15
K=1​

could have been written with L or M or N, for example, in place of both instances of K.

If the integral is indefinite and ends up to be a function of (say) x, then it needs an x, of course, and the proper place for the x is as a constant of integration. (Even though after the integral is taken, x need not be thought of as a constant.)

I hope that was sufficiently confusing (:-)>.
 
zinq said:
"What was wrong with x as the variable in the first place?"

To be technically correct, it's best to express an integral that ends up as being a function of (say) x in terms of integrating some variable that is not x (it doesn't matter which one). That's called a "dummy variable".

If the integral is indefinite and ends up to be a function of (say) x, then it needs an x, of course, and the proper place for the x is as a constant of integration. (Even though after the integral is taken, x need not be thought of as a constant.)

I hope that was sufficiently confusing (:-)>.

Apart from a bit in the middle, that post is nonsense.
 
ddddd28 said:
Is it possible to do an integral of f(x)*x without knowing f(x)?

Hi, if it is possible to say something on ##f##, as some restriction on particular functional space or if ##f## has particular properties, then sometimes it is possible to say something also for ##\int f(x)x dx##... in other cases it is the same to consider ##\int f(x) dx## as the integration by parts shows...
 
  • #10
"Apart from a bit in the middle, that post is nonsense."

You are correct; I wrote "constant of integration" where I meant to say "limit of integration". I hope #7 no longer seems quite so nonsensical with that correction.
 
  • #11
zinq said:
"Apart from a bit in the middle, that post is nonsense."

You are correct; I wrote "constant of integration" where I meant to say "limit of integration". I hope #7 no longer seems quite so nonsensical with that correction.

I think you mean a terminal, not a limit.
 
  • #12
One correct term for the a or b in "the integral of f(x) from a to b, with respect to x" is "limit of integration". (a is the lower limit of integration; b is the upper limit.) There may be other words for the same thing that I am not aware of.
 

Similar threads

Replies
6
Views
1K
Replies
6
Views
3K
Replies
3
Views
2K
Replies
20
Views
4K
Replies
17
Views
2K
Replies
11
Views
3K
Replies
3
Views
2K
Back
Top