B Integral test and its conclusion

The Subject
Messages
32
Reaction score
0
I'm really confused about this test. Suppose we let f(n)=an and f(x) follows all the conditions.
When you take the integral of f(x) and gives you some value. What are you supposed to conclude from this value?
 
Mathematics news on Phys.org
The Subject said:
When you take the integral of f(x) and gives you some value. What are you supposed to conclude from this value?

Look at an example. What value do you get from \int_0^\infty 3x\ dx ?
 
ok so I get
$$\lim_{t \to \infty} \int_0^t 3x dx = \lim_{t \to \infty} \frac{3}{2}x^2 |_0^t=lim_{t \to \infty} \bigg(\frac{3}{2}t^2 - \frac{3}{2}0^2\bigg)=\infty$$
 
The Subject said:
$$=\infty$$

So what does the integral test say about the convergence or divergence of the infinite series ##0 + 3 + 6 + 9 + 12 + ...## ?
 
The series 0 + 3 + ... diverges. Since f(x) div, an also diverges. I get it how to use it now.

Thanks!
 
The Subject said:
Although I don't intuitively understand why this is true. .

Sketch a function with a positive graph and, on top of that, sketch the rectangles whose areas represent the terms of the related series. These rectangles have bases [0,1], [1,2] ... etc. and heights determined by the function's value at the left endpoints. The area of the rectangles is not a particularly good approximation to the area under the graph, but the intuitive idea is that the two areas are either both finite or both infinite.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top