Integral : (x^2)/((x^2+1)^2)

  • Thread starter Alexx1
  • Start date
  • #1
86
0
The answer of the integral of (x^2)/((x^2+1)^2) is (1/2)(arctan(x)-(x/x^2+1))

In class, we've seen the steps to solve this integral, but I don't understand certain steps..
Can someone explain me how to solve this integral, step by step?
 

Answers and Replies

  • #2
uart
Science Advisor
2,776
9
If you can post the steps and point out those that you didn't understand then I'm sure someone can help you.

BTW. The easiest way to do that one is "integration by parts". Have you learnt this technique yet?
 
  • #3
86
0
If you can post the steps and point out those that you didn't understand then I'm sure someone can help you.

BTW. The easiest way to do that one is "integration by parts". Have you learnt this technique yet?

Sure, no problem, here are the steps:

Integral((x^2)/((x^2+1)^2)dx)
= (1/2)*Integral(x d(1/(x^2+1))
= (1/2)*(x/(x^2+1))-(1/2)*Integral(1/(x^2+1)dx)
= (1/2)*(x/(x^2+1))-(arctan(x))/2

Last step is the answer

(The answer I said earlier was wrong, this is the correct answer:(1/2)*(x/(x^2+1))-(arctan(x))/2)

Thank you
 
  • #4
867
0
[tex]\int\frac{x^2}{(x^2 + 1)^2} = \int x \frac{x}{(x^2 + 1)^2}[/tex]

Using ∫u v' = uv - ∫v u',
let u = x and v' = x/(x2 + 1)2
 
  • #5
4
0
It's basically separating it into parts ie.


[itex]\int \frac{x^2}{(x^2+1)^2}\rightarrow \int \frac{x}{1}.\frac{x}{(x^2+1)^2}\equiv x(x. \sin(\arctan(x)))[/itex]

as

[itex]\frac{x}{1}=\frac{1}{2}x^2[/itex]

and [itex]x\frac{x}{(1+x)^2}=x.\sin(\arctan(x))[/itex]

By the trig identity.

Thus the answer is:

[itex]\int\frac{x^2}{(x^2+1)^2}=-\frac{1}{2}.\frac{x}{(x^2+1)}+\frac{1}{2}\arctan(x)+C[/itex]

Don't forget the constant of integration, it's a silly way to loose marks. :smile:
 
Last edited:
  • #6
86
0
Thank you both!
 
  • #7
4
0
Thank you both!

np Bhorok's answer is more elegant and easier, but I thought you might need a long winded explanation and there's often more than one way to swing a cat I guess. Hope it helped. :smile:
 
  • #8
740
13
The answer of the integral of (x^2)/((x^2+1)^2) is (1/2)(arctan(x)-(x/x^2+1))

In class, we've seen the steps to solve this integral, but I don't understand certain steps..
Can someone explain me how to solve this integral, step by step?

since you have the answer, take its derivative & work backwards. that's how to figure it out. just don't show anyone your rough work :tongue2:
 
  • #9
uart
Science Advisor
2,776
9
Sure, no problem, here are the steps:

Integral((x^2)/((x^2+1)^2)dx)
= (1/2)*Integral(x d(-1/(x^2+1))
= (-1/2)*(x/(x^2+1)) -(1/2)*Integral(1/(x^2+1)dx)
= -(1/2)*(x/(x^2+1))+(arctan(x))/2

Last step is the answer

(The answer I said earlier was wrong, this is the correct answer:(1/2)*(x/(x^2+1))-(arctan(x))/2)

Thank you

No the original answer was correct, you dropped a minus sign in the first line of this derivation.
 

Related Threads on Integral : (x^2)/((x^2+1)^2)

  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
9
Views
2K
  • Last Post
Replies
13
Views
8K
Replies
7
Views
1K
  • Last Post
Replies
8
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
16
Views
4K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
4
Views
3K
Top