Jarle said:
But if you tell me to treat the radius as a constant, I must believe you.
Not really. You shouldn't have to do anything you don't understand. Only treat something as a constant if it is a constant.
If I want to integrate the function of area to a function of volume, I must find the function for area of the "cross-sections perpendicular to h". Does that mean the area of the "vertical" side of a cylinder standing up? And then just exclude the area of top and bottom.
I'm not sure I know what you're talking about. Integrate anything you want to get anything you want, as long as it makes sense. I think integrating slices perpendicular to the height (if that means what I think it means) is the easiest way to solve the cylinder problem, but mathematics doesn't care what you do. It will give you whatever you ask for (even if that isn't what you really wanted, of course).
I think the best assumption I can make at this point is that you don't really get what an integral is, and therefore don't understand how to apply it. Forgive me if I'm mistaken, but I'm going to speak from that perspective in the hopes of saying something helpful.
An integral is just the sum of the "values" of an infinite number of infinitely small "pieces" of "something". We take the "something" in question, and define some kind of coordinates for referring to every "piece" of that "something".
Above and/or below the integral sign, we write the range of coordinates (in the coordinate system we chose) of the "pieces" whose "values" we want to sum up. We can't name the coordinate of every single "piece" we want, because there are infinity of them. Instead, we just name the boundaries. In the 1-D case, this means the start and end coordinates.
After the integral sign, we write a formula for the "value" of any "piece" in terms of its coordinates in our chosen coordinate system. In order to make the integral easy to solve, this formula should take the form of something times "d"something. The "d"something should be the size of the "piece", in terms of the coordinate system we're using. In other words, the amount of coordinate space occupied by the "piece". This sounds strange, since I already said the pieces are infinitely small, but actually the "d"something does represent an "infinitely small number". But not small enough to be zero. Don't think too hard about that detail; there's a more accurate description of it, but it wouldn't make things any clearer here.
So, if we decide to make the "something" a 3-D shape, and to make the "pieces" cross-sectional slices of that shape, and to make the "values" the volumes of the individual slices, then we can just sum up the volumes of an infinite number of those infinitely small slices to get the total volume of the shape, no matter how curvy it is. That's one integral that will give you a volume.
For our coordinate system, we use the position of each slice in the direction (call it "x") perpendicular to the slices we are taking. Then, the formula for the volume of each slice is just the formula for the area of that slice times dx (which is the infinitely small thickness of the slice in the x direction). In other words, volume = integral from min x to max x of Area(x) times dx. Now it should be clear that "integral" is little more than a fancy word for "sum", plus the idea that the things you're summing are itty-bitty.
Of course, Area(x) must be written in terms of x (that's why it's written with the (x) at the end of it). Any "variable" in Area(x) that does not vary with x is not a variable. Anything that does, is, and needs to be rewritten in terms of x. To me, that's part of the concept of a "function of x".
It seems odd to use an integral of circular cross-sections to find the volume of a cylinder, because all you're doing is adding an infinity of infinitely small cylinders to get one big cylinder. So you're using the formula in order to get the formula. Which is kinda silly. But does this help at all?