Integrating a diagonal 2x2 matrix

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Integrating Matrix
Click For Summary
SUMMARY

The discussion centers on the integration of a diagonal 2x2 matrix represented by the equation \(\mathbf{V}_{-1}^{(D)} = \alpha\sigma_3 + c\mathbb{I}\), where \(\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\). The user seeks clarification on how to derive this expression from the partial differential equation \(\frac{\partial\mathbf{V}_{-1}^{(D)}}{\partial x} = \frac{i}{2}\begin{bmatrix} -(qr)_t & 0 \\ 0 & (qr)_t \end{bmatrix}\). The solution involves recognizing that differentiating the expression leads to the same form, confirming the relationship between \(\alpha\) and the diagonal matrix. Ultimately, the user resolves their query independently.

PREREQUISITES
  • Understanding of matrix algebra, specifically diagonal matrices.
  • Familiarity with partial differential equations (PDEs).
  • Knowledge of complex numbers and their applications in matrix equations.
  • Ability to interpret mathematical notation and symbols used in advanced calculus.
NEXT STEPS
  • Study the properties of diagonal matrices and their integration techniques.
  • Explore the application of partial differential equations in mathematical physics.
  • Learn about the implications of complex variables in matrix calculus.
  • Review the content of the referenced document, "MillerLecture06.pdf," for deeper insights into the topic.
USEFUL FOR

Mathematicians, physicists, and students studying advanced calculus or linear algebra who are interested in the integration of matrix equations and their applications in differential equations.

Dustinsfl
Messages
2,217
Reaction score
5
\(r = r(x, t)\), \(q = q(x, t)\), \(\sigma_3 =
\begin{bmatrix}
1 & 0\\
0 & -1
\end{bmatrix}
\)
I have the equation
\begin{align}
\frac{\partial\mathbf{V}_{-1}^{(D)}}{\partial x} &= \frac{i}{2}\begin{bmatrix}
-(qr)_t & 0\\
0 & (qr)_t
\end{bmatrix}\\
\mathbf{V}_{-1}^{(D)} &= \alpha\sigma_3 + c\mathbb{I}\qquad (*)
\end{align}
where \(\alpha\) is a function of \(x\) and \(t\) related to \(q\) and \(r\) and
\[
\alpha_x + \frac{1}{2}i(qr)_t = 0
\]

How is \((*)\) obtained? I don't see it. I know that \(c\mathbb{I}\) is the matrix constant of integration so I am only focused on how \(\alpha\sigma_3\) comes from integrating the diagonal matrix.

I am trying to figure out the last page of
http://math.arizona.edu/~mcl/Miller/MillerLecture06.pdf
 
Last edited:
Physics news on Phys.org
dwsmith said:
\(r = r(x, t)\), \(q = q(x, t)\), \(\sigma_3 =
\begin{bmatrix}
1 & 0\\
0 & -1
\end{bmatrix}
\)
I have the equation
\begin{align}
\frac{\partial\mathbf{V}_{-1}^{(D)}}{\partial x} &= \frac{i}{2}\begin{bmatrix}
-(qr)_t & 0\\
0 & (qr)_t
\end{bmatrix}\\
\mathbf{V}_{-1}^{(D)} &= \alpha\sigma_3 + c\mathbb{I}\qquad (*)
\end{align}
where \(\alpha\) is a function of \(x\) and \(t\) related to \(q\) and \(r\) and
\[
\alpha_x + \frac{1}{2}i(qr)_t = 0
\]

How is \((*)\) obtained? I don't see it. I know that \(c\mathbb{I}\) is the matrix constant of integration so I am only focused on how \(\alpha\sigma_3\) comes from integrating the diagonal matrix.

I am trying to figure out the last page of
http://math.arizona.edu/~mcl/Miller/MillerLecture06.pdf

Hmm. Interesting. Well, we can write
$$\frac{\partial\mathbf{V}_{-1}^{(D)}}{\partial x}=\frac{i}{2}\begin{bmatrix}
-(qr)_t & 0 \\ 0 & (qr)_t \end{bmatrix}=- \frac{i(qr)_{t}}{2} \begin{bmatrix} 1 &0 \\ 0 &-1 \end{bmatrix}= - \frac{i(qr)_{t}}{2} \sigma_{3}.$$
At the very least, if we take
$$\mathbf{V}_{-1}^{(D)} = \alpha \sigma_3 + c\mathbb{I} \qquad (*),$$
where
$$\alpha_x + \frac{1}{2}i(qr)_t = 0,$$
then if we differentiate $(*)$ w.r.t. $x$, we get that
$$\frac{\partial\mathbf{V}_{-1}^{(D)}}{\partial x}= \alpha_{x} \sigma_{3}=
- \frac{i(qr)_{t}}{2} \sigma_{3},$$
which is what we had before. Given that the author has not specified $\alpha$ explicitly, but only given a DE that it satisfies, it looks to me as though he's merely substituted one DE for another.
 
Ackbach said:
Hmm. Interesting. Well, we can write
$$\frac{\partial\mathbf{V}_{-1}^{(D)}}{\partial x}=\frac{i}{2}\begin{bmatrix}
-(qr)_t & 0 \\ 0 & (qr)_t \end{bmatrix}=- \frac{i(qr)_{t}}{2} \begin{bmatrix} 1 &0 \\ 0 &-1 \end{bmatrix}= - \frac{i(qr)_{t}}{2} \sigma_{3}.$$
At the very least, if we take
$$\mathbf{V}_{-1}^{(D)} = \alpha \sigma_3 + c\mathbb{I} \qquad (*),$$
where
$$\alpha_x + \frac{1}{2}i(qr)_t = 0,$$
then if we differentiate $(*)$ w.r.t. $x$, we get that
$$\frac{\partial\mathbf{V}_{-1}^{(D)}}{\partial x}= \alpha_{x} \sigma_{3}=
- \frac{i(qr)_{t}}{2} \sigma_{3},$$
which is what we had before. Given that the author has not specified $\alpha$ explicitly, but only given a DE that it satisfies, it looks to me as though he's merely substituted one DE for another.

Thanks, I actually figured everything out but forgot to mark the thread as solved.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K