Alem2000
- 117
- 0
correct me if I am wrong...
By integrating gravity(g)= -9.8m/s...you get the motion equations with constant acceleration
I didnt know how to set the limits of the integral...LATEX IS TUFF
d\vec{a}=(-g)dt 1
\int_{\vec{V}_0}^{\vec{V}}dv=\int_{t_0}^{t_1}{-g}dt 2
\Delta{\vec{v}}=(-g)t 3
\vec{v}dt=d\vec{r} 4
\d\vec{r}=(\vec{v}_0+(-g)t)dt 5
\intd\vec{r}=\int(\vec{v}_0+(-g)tdt 6
\Delta\vec{r}=\vec{v}_0t+1/2(-g)t^2 7
\Delta{\vec{v}}=\int{\vec{v}_0}dt 8
HOLD ON A SEC IM TRYN TO LATEX...Can anyone prove the force equations?
HI merons dad
By integrating gravity(g)= -9.8m/s...you get the motion equations with constant acceleration
I didnt know how to set the limits of the integral...LATEX IS TUFF
d\vec{a}=(-g)dt 1
\int_{\vec{V}_0}^{\vec{V}}dv=\int_{t_0}^{t_1}{-g}dt 2
\Delta{\vec{v}}=(-g)t 3
\vec{v}dt=d\vec{r} 4
\d\vec{r}=(\vec{v}_0+(-g)t)dt 5
\intd\vec{r}=\int(\vec{v}_0+(-g)tdt 6
\Delta\vec{r}=\vec{v}_0t+1/2(-g)t^2 7
\Delta{\vec{v}}=\int{\vec{v}_0}dt 8
HOLD ON A SEC IM TRYN TO LATEX...Can anyone prove the force equations?
HI merons dad
Last edited: