MHB Integrating $\int_{1}^{\infty} {x}^{-3} lnx \,dx$: Is the Answer 1?

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Integrating
Click For Summary
The integral $\int_{1}^{\infty} {x}^{-3} \ln x \,dx$ is evaluated using integration by parts, with $u = \ln x$ and $dv = x^{-3} dx$. The calculation leads to a limit that simplifies to $\frac{1}{4}$, as both terms involving $t$ approach zero as $t$ approaches infinity. However, the solution claims the integral evaluates to 1, which contradicts the derived result. Further exploration using substitution confirms the integral can be expressed differently, but the conclusion remains that the integral evaluates to $\frac{1}{4}$. The discussion highlights a potential misunderstanding or miscommunication regarding the final answer.
tmt1
Messages
230
Reaction score
0
I have

$$\int_{1}^{\infty} {x}^{-3} lnx \,dx$$

I choose to use integration by parts so I let $u = lnx$ and $dv = {x}^{-3} dx$.

Therefore $du = \frac{1}{x} dx$ and $v = \frac{{x}^{-2}}{-2}$

Thus, what I need to evaluate is

$$- \frac{-lnx}{{2x}^{2}} - \frac{1}{4 {x}^{2}} + C$$

As $x$ approaches infinity, both those terms go to zero. So I am left with:

$$\frac{-ln1}{{2(1)}^{2}} + \frac{1}{4 ({1}^{2})} $$

Since $ln1 = 0$ the first term evaluates to zero, so I am left with $+ \frac{1}{4}$.

Is this correct? The solution is saying it evaluates to 1.
 
Physics news on Phys.org
This is how I would work it. We are given:

$$I=\int_1^{\infty} x^{-3}\ln(x)\,dx$$

This is an improper integral, so let's use a limit:

$$I=\lim_{t\to\infty}\left(\int_1^{t} x^{-3}\ln(x)\,dx\right)$$

Using IBP, where:

$$u=\ln(x)\,\therefore\,du=x^{-1}\,dx$$

$$dv=x^{-3}\,dx\,\therefore\,v=-\frac{1}{2}x^{-2}$$

And so we have:

$$I=\lim_{t\to\infty}\left(\left[-\frac{1}{2}x^{-2}\ln(x)\right]_1^t+\frac{1}{2}\int_1^t x^{-3}\,dx\right)$$

$$I=\lim_{t\to\infty}\left(-\frac{1}{2}t^{-2}\ln(t)-\frac{1}{4}\left[x^{-2}\right]_1^t\right)$$

$$I=\lim_{t\to\infty}\left(-\frac{1}{2}t^{-2}\ln(t)-\frac{1}{4}\left(t^{-2}-1\right)\right)$$

$$I=\lim_{t\to\infty}\left(-\frac{1}{2}t^{-2}\ln(t)-\frac{1}{4}t^{-2}+\frac{1}{4}\right)$$

$$I=\frac{1}{4}-\frac{1}{2}\lim_{t\to\infty}\left(\frac{\ln(t)}{t^2}\right)$$

Now, application of L'Hôpital's Rule gives us:

$$I=\frac{1}{4}-\frac{1}{2}\lim_{t\to\infty}\left(\frac{1}{2t^2}\right)$$

$$I=\frac{1}{4}$$
 
The integral can be written as

$$-\int^\infty_1 (1/x)\frac{\ln(1/x)}{x^2} dx$$

use the sub $1/x = t$

$$-\int^1_0t\ln(t) dt$$

finalize by integration by parts.