Integrating $\int_{1}^{\infty} {x}^{-3} lnx \,dx$: Is the Answer 1?

  • Context: MHB 
  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Integrating
Click For Summary
SUMMARY

The integral $\int_{1}^{\infty} {x}^{-3} \ln x \,dx$ evaluates to $\frac{1}{4}$, not 1. The integration by parts method is applied with $u = \ln x$ and $dv = x^{-3} dx$, leading to the evaluation of limits as $x$ approaches infinity. The correct final expression involves the application of L'Hôpital's Rule, confirming that the integral converges to $\frac{1}{4}$ after simplifying the terms.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with integration by parts
  • Knowledge of L'Hôpital's Rule
  • Basic logarithmic properties
NEXT STEPS
  • Study the application of integration by parts in various contexts
  • Learn about improper integrals and their convergence criteria
  • Explore L'Hôpital's Rule and its applications in calculus
  • Investigate the properties of logarithmic functions in integration
USEFUL FOR

Mathematicians, calculus students, and educators seeking to deepen their understanding of improper integrals and integration techniques.

tmt1
Messages
230
Reaction score
0
I have

$$\int_{1}^{\infty} {x}^{-3} lnx \,dx$$

I choose to use integration by parts so I let $u = lnx$ and $dv = {x}^{-3} dx$.

Therefore $du = \frac{1}{x} dx$ and $v = \frac{{x}^{-2}}{-2}$

Thus, what I need to evaluate is

$$- \frac{-lnx}{{2x}^{2}} - \frac{1}{4 {x}^{2}} + C$$

As $x$ approaches infinity, both those terms go to zero. So I am left with:

$$\frac{-ln1}{{2(1)}^{2}} + \frac{1}{4 ({1}^{2})} $$

Since $ln1 = 0$ the first term evaluates to zero, so I am left with $+ \frac{1}{4}$.

Is this correct? The solution is saying it evaluates to 1.
 
Physics news on Phys.org
This is how I would work it. We are given:

$$I=\int_1^{\infty} x^{-3}\ln(x)\,dx$$

This is an improper integral, so let's use a limit:

$$I=\lim_{t\to\infty}\left(\int_1^{t} x^{-3}\ln(x)\,dx\right)$$

Using IBP, where:

$$u=\ln(x)\,\therefore\,du=x^{-1}\,dx$$

$$dv=x^{-3}\,dx\,\therefore\,v=-\frac{1}{2}x^{-2}$$

And so we have:

$$I=\lim_{t\to\infty}\left(\left[-\frac{1}{2}x^{-2}\ln(x)\right]_1^t+\frac{1}{2}\int_1^t x^{-3}\,dx\right)$$

$$I=\lim_{t\to\infty}\left(-\frac{1}{2}t^{-2}\ln(t)-\frac{1}{4}\left[x^{-2}\right]_1^t\right)$$

$$I=\lim_{t\to\infty}\left(-\frac{1}{2}t^{-2}\ln(t)-\frac{1}{4}\left(t^{-2}-1\right)\right)$$

$$I=\lim_{t\to\infty}\left(-\frac{1}{2}t^{-2}\ln(t)-\frac{1}{4}t^{-2}+\frac{1}{4}\right)$$

$$I=\frac{1}{4}-\frac{1}{2}\lim_{t\to\infty}\left(\frac{\ln(t)}{t^2}\right)$$

Now, application of L'Hôpital's Rule gives us:

$$I=\frac{1}{4}-\frac{1}{2}\lim_{t\to\infty}\left(\frac{1}{2t^2}\right)$$

$$I=\frac{1}{4}$$
 
The integral can be written as

$$-\int^\infty_1 (1/x)\frac{\ln(1/x)}{x^2} dx$$

use the sub $1/x = t$

$$-\int^1_0t\ln(t) dt$$

finalize by integration by parts.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 30 ·
2
Replies
30
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K