A Integrating partial derivatives in a field equation

AI Thread Summary
The discussion focuses on integrating the expression for ψ in terms of M within a field equation context. The integral presented is related to the partial derivative of M with respect to r, and there is confusion regarding the dimensional consistency of the terms involved. Participants clarify that r represents a shell radius and v denotes time, emphasizing the connection to spacetime. The conversation also highlights the need for accurate transcription of the integrand to avoid errors in calculations. Ultimately, the goal is to express ψ in a usable form for further research involving multiple field equations.
Samson Ogaga Ojako
Messages
11
Reaction score
1
I am integrating the below:

\begin{equation}
\psi(r,v)=\int \left( \frac{\frac{\partial M(r,v)}{\partial r}}{r-2M(r,v)}\right)dr
\end{equation}

I am trying to write ψ in terms of M.

Please, any assistance will be appreciated.​
 
Last edited:
Astronomy news on Phys.org
Is it good enough to write ##\psi## in terms of ##M## and ##\int \frac{M}{r^2}dr##?

If yes then just write ##\psi=\int ((\frac{\partial M}{\partial r}\frac{1}{r}-\frac{M}{r^2})+\frac{M}{r^2}-2M)dr## and notice that the first term is the derivative of ##\frac{M}{r}## so after all it will be $$\psi=\frac{M}{r}-2\int Mdr+\int \frac{M}{r^2}dr+C$$
 
Last edited:
  • Like
Likes Samson Ogaga Ojako
Is r a radius? (Or any other dimensionsl quantity?) If so, where did this integral come from?
 
Orodruin said:
Is r a radius? (Or any other dimensionsl quantity?) If so, where did this integral come from?
The 'r' is a shell radius while the "v" is the time.
The question is related to spacetime.

Thank you for getting in touch
 
Delta² said:
Is it good enough to write ##\psi## in terms of ##M## and ##\int \frac{M}{r^2}dr##?

If yes then just write ##\psi=\int ((\frac{\partial M}{\partial r}\frac{1}{r}-\frac{M}{r^2})+\frac{M}{r^2}-2M)dr## and notice that the first term is the derivative of ##\frac{M}{r}## so after all it will be $$\psi=\frac{M}{r}-2\int Mdr+\int \frac{M}{r^2}dr+C$$

This looks so good enough, Sir.
I must say, thank you very much.
Let me look at how you were able to simplify the integration first.
This is brilliant.
I will get back to you just now.

Cheers
 
  • Like
Likes Delta2
Samson Ogaga Ojako said:
The 'r' is a shell radius while the "v" is the time.
The question is related to spacetime.

Thank you for getting in touch
This does not answer where your integral came from. The reason I am asking is that if ##r## is dimensionful, then your expression is dimensionally inconsistent because ##(\partial M/\partial r)/r## does not have the same physical dimension as ##M##.
 
Orodruin said:
This does not answer where your integral came from. The reason I am asking is that if ##r## is dimensionful, then your expression is dimensionally inconsistent because ##(\partial M/\partial r)/r## does not have the same physical dimension as ##M##.
Maybe there is some sort of constant (with the proper units) in front of the ##-2M## term, which he omitted.
 
Orodruin said:
This does not answer where your integral came from. The reason I am asking is that if ##r## is dimensionful, then your expression is dimensionally inconsistent because ##(\partial M/\partial r)/r## does not have the same physical dimension as ##M##.
See the attached for details of how \psi, #M# and #r# are related.

Best regard.
 

Attachments

So you have not transcribed the problem correctly then. The integrand is
$$
\frac{\partial_r M}{r - 2M},
$$
not
$$
\frac{\partial_r M}{r} - 2M.
$$
 
  • #10
Delta² said:
Maybe there is some sort of constant (with the proper units) in front of the ##-2M## term, which he omitted.

I think he is unable to see the typing clearly because of the way the question is typed.

So, I've decided to attach a copy of the typed question to him for a better understanding of the question.

Thank you once again.
Cheers
 

Attachments

  • #11
Orodruin said:
So you have not transcribed the problem correctly then. The integrand is
$$
\frac{\partial_r M}{r - 2M},
$$
not
$$
\frac{\partial_r M}{r} - 2M.
$$
Yeah
 
  • #12
Ah, then what I did in post # 2 is not correct...
 
  • #13
Delta² said:
Ah, then what I did in post # 2 is not correct...

Oh ok.

You can take a second look at it again while I retype the question in LaTeX.

Cheers
 
  • #14
Well this look like some sort of assignment or homework. You have to show us some effort from your side.

All I can think right now is to transform the integral so that we get as end result ##-\frac{1}{2}\ln|r-2M|+\frac{1}{2}\int \frac{1}{r-2M} dr +C##
 
  • #15
Delta² said:
Well this looks like some sort of assignment or homework. You have to show us some effort from your side.

All I can think right now is to transform the integral so that we get as end result ##-\frac{1}{2}\ln|r-2M|+\frac{1}{2}\int \frac{1}{r-2M} dr +C##

It is not really a homework or assignment. This is part of my research finding. I've gotten to a stage where I have 3 field equations with 3 variables #M#, #\psi# and #phi# all are functions of #(r,v)#

\begin{equation}
\frac{\partial {m}}{\partial v} = 4\pi{r^{2}}\phi_{v} \left[e^{-\psi}\phi_{v} + \left( 1-\frac{2m}{r}\right) \phi_{r} \right] = m^{\prime}(v)
\end{equation}
\begin{equation}
\frac{\partial {\psi}}{\partial r} = 4\pi{r^{2}}\phi_{r}^2 = \psi^{\prime}(r)
\end{equation}
\begin{equation}
\frac{\partial {m}}{\partial r} = 2\pi{r^{2}}\phi_{r}^2 \left( 1-\frac{2m}{r}\right) = m^{\prime}(r)
\end{equation}

From equations 2 and 3, I was able to get what I shared online.

\begin{equation}
\psi(r,v)=\int \left( \frac{\frac{\partial M(r,v)}{\partial r}}{r-2M(r,v)}\right)dr
\end{equation}.

I have made some effort to get #\psi# in terms of #M# so that I can solve equation 1.

Please, you can help if you can.
 
  • #16
Can you have a look again at your equations (3) and (4) , because from those two I get that

$$\psi=\int \frac {2r\frac{\partial M}{\partial r}}{r-2M}dr$$
 
  • Like
Likes Samson Ogaga Ojako
  • #17
Delta² said:
Can you have a look again at your equations (3) and (4) , because from those two I get that

$$\psi=\int \frac {2r\frac{\partial M}{\partial r}}{r-2M}dr$$
Oh ok.

Let me check again then.
 
  • #18
Samson Ogaga Ojako said:
Oh ok.

Let me check again then.
You are right Sir
 
Back
Top