georg gill
- 151
- 6
Homework Statement
Integrate:
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-2\sqrt{x^2+y^2+z^2}}dxdydz
hint: use spherical integration
Homework Equations
p=\sqrt{x^2+y^2+z^2}
dV=dp d\phi p sin\phi p d\theta
The Attempt at a Solution
\int_{0}^{\infty}\int_{0}^{\pi}\int_{0}^{2\pi}e^{-2p} p^2 sin\phi d\theta d\phi dp
look at integration for p since it is the most hard one first:
Integration by parts:
sin\phi\int_{0}^{\infty}e^{-2p} p^2 dp
\int_{0}^{\infty}e^{-2p} p^2 dp=[\frac{e^{-2p}}{-2} p^2+\int_{0}^{\infty}e^{-2p}pdp]^{\infty}_0 (I)
\int_{0}^{\infty}e^{-2p}pdp=[\frac{e^{-2p}}{-2}p+\int_{0}^{\infty}e^{-2p}dp]^{\infty}_0=[\frac{e^{-2p}}{-2}p+\frac{e^{-2p}}{-2}]^{\infty}_0
and (I) becomes:
[\frac{e^{-2p}}{-2} p^2+\frac{e^{-2p}}{-2}p+\frac{e^{-2p}}{-2}]^{\infty}_0
but here i get infinity in numerator and denumerator for p=\infty. How do I solve this?