Integrating Sinx/x^2 from Y=4 to Y=0 with x=2 and x=√y

  • Thread starter Thread starter theaviator
  • Start date Start date
theaviator
Messages
6
Reaction score
0
Y=4 x=2
∫ ∫ Sinx ∕ x^2 dx dy
Y=0 x=√y
 
Physics news on Phys.org
Can one find an integral table with

\int \frac{sin\,x}{x^2}\,dx ?

Alternatively, expand sin x as an infinite series, divide by x2 and solve for each term.
 
i changed the order of the integration...the final answer i had is the same one in the sheet from which i get the problem...but i don't know id the way i solved it is right or wrong...please HELP...
X=2 y=x^2
∫ ∫ sinx/x^2 dx dy
X=0 y=0

X=2 y=x^2
= ∫ [(sinx/x^2)y] dx
X=0 y=0

X=2
=∫ sinx dx
X=0
X=2
= [ -cosx]
X=0

= -cos2+cos(0)= 1-cos2
 
That is correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top