Integrating the Square Root of a Polynomial: (4 - x^2)^1/2

  • Thread starter Thread starter optics.tech
  • Start date Start date
  • Tags Tags
    Integral
optics.tech
Messages
79
Reaction score
1
Hi everyone,

How to integrate the (4 - x^2)^1/2?

Thank in advance
 
Physics news on Phys.org
Use a trigonometric substitution:

<br /> \begin{gathered}<br /> \int {\sqrt {4 - x^2 } dx \Rightarrow } \left[ {\begin{array}{*{20}c}<br /> {x = 2\sin \theta } \\<br /> {dx = 2\cos \theta d\theta } \\<br /> <br /> \end{array} } \right] \hfill \\<br /> \int {2\cos \theta \sqrt {4(1 - \cos ^2 \theta )} } d\theta = 2\int 2 \sin \theta \cos \theta d\theta \cdot \cdot \cdot \hfill \\ <br /> \end{gathered} <br />

I think you can get it from there.
 
Wow, that's some Latex mastery you have there.
 
Back
Top