cjc0117
- 91
- 1
Hi everyone. I am trying to integrate the following:
\int^{\frac{π}{2}}_{-\frac{π}{2}}\int^{acosθ}_{0}\int^{\sqrt{a^{2}-r^{2}}}_{-\sqrt{a^{2}-r^{2}}}rdzdrdθ
Here's my work:
=2\int^{\frac{π}{2}}_{-\frac{π}{2}}\int^{acosθ}_{0}r\sqrt{a^{2}-r^{2}}drdθ
I use substitution with u=a2-r2 to get:
=-\int^{\frac{π}{2}}_{-\frac{π}{2}}\int^{a^{2}sin^{2}θ}_{a^{2}}u^{\frac{1}{2}}dudθ
=-\frac{2}{3}a^{3}\int^{\frac{π}{2}}_{-\frac{π}{2}}(sin^{3}θ-1)dθ
=-\frac{2}{3}a^{3}\int^{\frac{π}{2}}_{-\frac{π}{2}}sin^{3}θdθ+\frac{2}{3}a^{3}\int^{\frac{π}{2}}_{-\frac{π}{2}}dθ
sin3θ is an odd function so the first integral is equal to zero:
=\frac{2}{3}a^{3}\int^{\frac{π}{2}}_{-\frac{π}{2}}dθ
=\frac{2}{3}πa^{3}
However, I have seen other solutions online that give the actual answer as 2a3(3π-4)/9. The authors of these solutions change the limits of integration of the original triple integral by taking advantage of symmetry. More specifically, I noticed that the person changed the limits of θ from 0 to π/2 by multiplying the integral by 2. Then when you get to the point when you integrate sin3θ, the integral no longer equals zero. However, I thought you could only do this if the region of integration has no θ dependence. And in any case, why should it matter whether I change the limits of integration or not? It's still the same integral, right? I have a feeling I'm making a very dumb mistake somewhere but I can't find out where. Thanks for any help.
\int^{\frac{π}{2}}_{-\frac{π}{2}}\int^{acosθ}_{0}\int^{\sqrt{a^{2}-r^{2}}}_{-\sqrt{a^{2}-r^{2}}}rdzdrdθ
Here's my work:
=2\int^{\frac{π}{2}}_{-\frac{π}{2}}\int^{acosθ}_{0}r\sqrt{a^{2}-r^{2}}drdθ
I use substitution with u=a2-r2 to get:
=-\int^{\frac{π}{2}}_{-\frac{π}{2}}\int^{a^{2}sin^{2}θ}_{a^{2}}u^{\frac{1}{2}}dudθ
=-\frac{2}{3}a^{3}\int^{\frac{π}{2}}_{-\frac{π}{2}}(sin^{3}θ-1)dθ
=-\frac{2}{3}a^{3}\int^{\frac{π}{2}}_{-\frac{π}{2}}sin^{3}θdθ+\frac{2}{3}a^{3}\int^{\frac{π}{2}}_{-\frac{π}{2}}dθ
sin3θ is an odd function so the first integral is equal to zero:
=\frac{2}{3}a^{3}\int^{\frac{π}{2}}_{-\frac{π}{2}}dθ
=\frac{2}{3}πa^{3}
However, I have seen other solutions online that give the actual answer as 2a3(3π-4)/9. The authors of these solutions change the limits of integration of the original triple integral by taking advantage of symmetry. More specifically, I noticed that the person changed the limits of θ from 0 to π/2 by multiplying the integral by 2. Then when you get to the point when you integrate sin3θ, the integral no longer equals zero. However, I thought you could only do this if the region of integration has no θ dependence. And in any case, why should it matter whether I change the limits of integration or not? It's still the same integral, right? I have a feeling I'm making a very dumb mistake somewhere but I can't find out where. Thanks for any help.
Last edited: