Integrating x * (cos x)^ n between pi/2 and 0

  • Thread starter Thread starter ZakS
  • Start date Start date
  • Tags Tags
    Integrating
ZakS
Messages
1
Reaction score
0
Would anyone be able to help me do this? I have tried by parts, but did not make progress. As n gets large, the area gets smaller.

Your help is appreciated.

Z
 
Physics news on Phys.org
You might apply that cos(x)=(eix+e-ix)/2

ehild
 
Try integration by parts just once and use the formula for ∫cosnx dx twice.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top