FaraDazed
- 347
- 2
Homework Statement
Find the indefinite integral of the below, using partial fractions.
<br /> \frac{4x^2+6x-1}{(x+3)(2x^2-1)}<br />
Homework Equations
?
The Attempt at a Solution
First I want to say there is probably a much easier and quicker way to get around certain things I have done but I have just done it the only way I could see (I always seem to go the long way around). So if I am correct then I would really appreciate some tips on how to do it quicker (for in exams) and also if I am incorrect to point out my mistakes. Thanks :)
first I set up the partial fractions.
<br /> \frac{4x^2+6x-1}{(x+3)(2x^2-1)}=\frac{A}{x+3}+\frac{Bx+C}{2x^2-1} \\<br /> \rightarrow \,\,\, 4x^2+6x-1=A(2x^2-1)+(Bx+C)(x+3) \\<br /> 4x^2+6x-1=2Ax^2-A+Bx^2+3Bx+Cx+3C<br />
And then equated the coefficients:
For X^2: 4=2A+B
For X^1: 6=3B+C
For X^0: -1=3C-A
Then what I did what multiply the third equation above by 2 to get -2=6C-2A and then added it to the first equation to get 2=6C+B and solved for B and substituted it into the second equation which resulted in:
<br /> 6=3(2-6C)+C\\<br /> 6=6-11C \\<br /> 0=-11C \\<br /> ∴ C=0<br />
And then knowing C=0 I found A=1 and then that B=2 .
Which then leads to:
<br /> \frac{4x^2+6x-1}{(x+3)(2x^2-1)}=\frac{1}{x+3}+\frac{2x}{2x^2-1} \\<br /> \frac{4x^2+6x-1}{(x+3)(2x^2-1)}=\frac{1}{x+3}+\frac{2x}{2x^2-1}\\<br /> \int \frac{4x^2+6x-1}{(x+3)(2x^2-1)} \,\, dx = \ln{|x+3|} + \frac{1}{2} \ln{|2x^2-1|}<br />
I think I may have done something wrong. I had to use an integral calculator online to find the integral of \frac{2x}{2x^2-1} as I had no idea how to do it. Which kind of defeats the point.