I Integration of Legendre Polynomials with different arguments

Alan Sammarone
Messages
5
Reaction score
1
Hi everybody,
I'm trying to calculate this:

$$\sum_{l=0}^{\infty} \int_{\Omega} d\theta' d\phi' \cos{\theta'} \sin{\theta'} P_l (\cos{\gamma})$$

where ##P_{l}## are the Legendre polynomials, ##\Omega## is the surface of a sphere of radius ##R##, and

$$ \cos{\gamma} = \cos{\theta'} \cos{\theta} + \sin{\theta'}\sin{\theta}\,\cos({\phi' -\phi}) $$

I am told that only the ##l=1## term survives due to orthogonality of Legendre polynomials (of course ##\cos{\theta'} = P_{1}(\cos{\theta'}) ##), but I'm don't see why, since the Legendre polynomials have different arguments.

How can I show that this is true?
 
Physics news on Phys.org
Your angle ##\gamma## is an angle from the direction defined by ##\theta## and ##\phi##. The spherical harmonics of a fixed ##\ell## form an irrep of the rotation group and so your ##P_\ell## will be rotated into a linear combination of the spherical harmonics ##Y_\ell^m##. The Legendre polynomial ##P_1(\cos\theta') = \cos\theta'## is directly proportional to ##Y_1^0(\theta',\phi')## and so your integral will project out this component of ##P_\ell(\cos\gamma)##.
 
Back
Top