- #1
Rectifier
Gold Member
- 313
- 4
Hello, I am having trouble with solving the problem below
The problem
Find all primitive functions to ## f(x) = \frac{1}{\sqrt{a+x^2}} ##.
(Translated to English)
The attempt
I am starting with substituting ## t= \sqrt{a+x^2} \Rightarrow x = \sqrt{t^2 - a} ## in $$ \int \frac{1}{\sqrt{a+x^2}} \ dx \rightarrow \int \frac{1}{t} \ dx $$
## \frac{dx}{dt} = D \left( \sqrt{t^2 - a} \right) = \frac{1}{2 \sqrt{t^2 - a}} \cdot 2t = \frac{t}{\sqrt{t^2 - a}} ##
.
## dx = \frac{t}{\sqrt{t^2 - a}} \cdot dt ##
Together we get:
$$ \int \frac{1}{t} \frac{t}{\sqrt{t^2 - a}} \cdot dt = \int \frac{1}{\sqrt{t^2 - a}} \cdot dt $$
This is where I get stuck since this integral is not much easier to solve that the original.
The problem
Find all primitive functions to ## f(x) = \frac{1}{\sqrt{a+x^2}} ##.
(Translated to English)
The attempt
I am starting with substituting ## t= \sqrt{a+x^2} \Rightarrow x = \sqrt{t^2 - a} ## in $$ \int \frac{1}{\sqrt{a+x^2}} \ dx \rightarrow \int \frac{1}{t} \ dx $$
## \frac{dx}{dt} = D \left( \sqrt{t^2 - a} \right) = \frac{1}{2 \sqrt{t^2 - a}} \cdot 2t = \frac{t}{\sqrt{t^2 - a}} ##
.
## dx = \frac{t}{\sqrt{t^2 - a}} \cdot dt ##
Together we get:
$$ \int \frac{1}{t} \frac{t}{\sqrt{t^2 - a}} \cdot dt = \int \frac{1}{\sqrt{t^2 - a}} \cdot dt $$
This is where I get stuck since this integral is not much easier to solve that the original.