MHB Prove Inequality: $\sqrt{ab}+\sqrt{cd}\le \sqrt{(a+d)(b+c)}$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that for positive reals $a,\,b,\,c,\,d$, $\sqrt{ab}+\sqrt{cd}\le \sqrt{(a+d)(b+c)}$.
 
Mathematics news on Phys.org
We have:

$$\sqrt{ab} + \sqrt{cd} \leq \sqrt{(a+d)(b+c)} \\\\
\left ( \sqrt{ab} + \sqrt{cd}\right )^2 \leq \left ( \sqrt{ab + ac + bd + cd} \right )^2
\\\\ab + cd + 2\sqrt{ab}\sqrt{cd}\leq ab + ac + bd + cd
\\\\ac + bd - 2\sqrt{ab}\sqrt{cd}\geq 0
\\\\\left ( \sqrt{ac} \right )^2 + \left ( \sqrt{bd} \right )^2-2\sqrt{ac}\sqrt{bd}\geq 0
\\\\\left ( \sqrt{ac}-\sqrt{bd} \right )^2 \geq 0. $$

Thus the inequality holds.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top