(adsbygoogle = window.adsbygoogle || []).push({}); The problem statement, all variables and given/known data

Let W be a complex finite dimensional vector space with a hermitian scalar product and let T: W -> W be linear and normal. Prove that U is a T-invariant subspace of W if and only if V is a T*-invariant subspace, where V is the orthogonal complement of U.

The attempt at a solution

Let u in U and v in V. If U is T-invariant, then (Tu, v) = 0. But (Tu, v) = (u, T*v) so T*v is in V and V is T*-invariant. Similarly, if V is T*-invariant, then U is T-invariant. Note that I haven't used the fact that T is normal. It seems to me that T doesn't have to be normal. Am I wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Invariance - Normal Linear Transformation

**Physics Forums | Science Articles, Homework Help, Discussion**