Spook
- 3
- 0
HI guys first post
I need to show that
B^2-E^2/C^2 is invariant under Lorentz transformation (E and B are electromagnetic fields)
now:
B^2-E^2/C^2=B^2_x+B^2_y+B^2_z-E^2_x/C^2-E^2_y/C^2-E^2_z/C^2)
and
E'_x=E_x
E'_y=\gamma(E_y-\frac{v}{c}B_z)
E'_z=\gamma(E_z-\frac{v}{c}B_y)
B'_x=B_x
B'_y=\gamma(B_y+\frac{v}{c}E_z)
B'_z=\gamma(B_z+\frac{v}{c}E_y)
but i can't manupilate it to give me the correct answer ie
B'^2-E'^2/C^2=B^2_x+B^2_y+B^2_z-E^2_x/C^2-E^2_y/C^2-E^2_z/C^2
Can anyone help me out? Basically because of the \gamma^2 term I am tring to factorise out a 1-\frac{v^2}{C^2} ie (1/\gamma^2) but I am having no joy.

I need to show that
B^2-E^2/C^2 is invariant under Lorentz transformation (E and B are electromagnetic fields)
now:
B^2-E^2/C^2=B^2_x+B^2_y+B^2_z-E^2_x/C^2-E^2_y/C^2-E^2_z/C^2)
and
E'_x=E_x
E'_y=\gamma(E_y-\frac{v}{c}B_z)
E'_z=\gamma(E_z-\frac{v}{c}B_y)
B'_x=B_x
B'_y=\gamma(B_y+\frac{v}{c}E_z)
B'_z=\gamma(B_z+\frac{v}{c}E_y)
but i can't manupilate it to give me the correct answer ie
B'^2-E'^2/C^2=B^2_x+B^2_y+B^2_z-E^2_x/C^2-E^2_y/C^2-E^2_z/C^2
Can anyone help me out? Basically because of the \gamma^2 term I am tring to factorise out a 1-\frac{v^2}{C^2} ie (1/\gamma^2) but I am having no joy.
Last edited: