Peeter
- 303
- 3
I was summarizing for myself the various four-vectors of mechanics:
<br /> \begin{align*}<br /> x &= ct + \mathbf{x} \\<br /> V &= \frac{dx}{d\tau} = \gamma(c + \mathbf{v}) \\<br /> P &= m V = E/c + \gamma\mathbf{p} \\<br /> f &= m\frac{d^2 x}{d\tau^2} = m\frac{d V}{d\tau} \\<br /> \end{align*}<br />
where:
<br /> \begin{align*}<br /> \gamma^{-2} &= (1 - {\lvert \mathbf{v}/c \rvert}^2) \\<br /> d\tau &= {\left(\frac{dx}{d\lambda} \cdot \frac{dx}{d\lambda}\right)}^{1/2} d\lambda \\<br /> x \cdot x = {\lvert x \rvert}^2 &= c^2t^2 - {\lvert \mathbf{x} \rvert}^2 \\<br /> E &= \int f \cdot (c d\tau) \\<br /> \mathbf{v} &= \frac{d\mathbf{x}}{dt} \\<br /> \mathbf{p} &= m\mathbf{v} \\<br /> \end{align*}<br />
Invarients for the first three four vectors are:
<br /> \begin{align*}<br /> {\lvert x \rvert}^2 &= c^2 t^2 - {\lvert \mathbf{x} \rvert}^2 = c^2 \tau^2 \\<br /> {\lvert V \rvert}^2 &= \gamma^2 (c^2 - {\lvert \mathbf{v} \rvert}^2) = c^2 \\<br /> {\lvert P \rvert}^2 &= m^2 {\lvert V \rvert}^2 = m^2 c^2 \\<br /> \end{align*}<br />
Is the minkowski norm of the four vector force:
<br /> f = m\frac{d^2 x}{d\tau^2} <br />
also an invarient? I think it has to be. Assuming that is the case, what would the value (and significance if any) of this be?
<br /> \begin{align*}<br /> x &= ct + \mathbf{x} \\<br /> V &= \frac{dx}{d\tau} = \gamma(c + \mathbf{v}) \\<br /> P &= m V = E/c + \gamma\mathbf{p} \\<br /> f &= m\frac{d^2 x}{d\tau^2} = m\frac{d V}{d\tau} \\<br /> \end{align*}<br />
where:
<br /> \begin{align*}<br /> \gamma^{-2} &= (1 - {\lvert \mathbf{v}/c \rvert}^2) \\<br /> d\tau &= {\left(\frac{dx}{d\lambda} \cdot \frac{dx}{d\lambda}\right)}^{1/2} d\lambda \\<br /> x \cdot x = {\lvert x \rvert}^2 &= c^2t^2 - {\lvert \mathbf{x} \rvert}^2 \\<br /> E &= \int f \cdot (c d\tau) \\<br /> \mathbf{v} &= \frac{d\mathbf{x}}{dt} \\<br /> \mathbf{p} &= m\mathbf{v} \\<br /> \end{align*}<br />
Invarients for the first three four vectors are:
<br /> \begin{align*}<br /> {\lvert x \rvert}^2 &= c^2 t^2 - {\lvert \mathbf{x} \rvert}^2 = c^2 \tau^2 \\<br /> {\lvert V \rvert}^2 &= \gamma^2 (c^2 - {\lvert \mathbf{v} \rvert}^2) = c^2 \\<br /> {\lvert P \rvert}^2 &= m^2 {\lvert V \rvert}^2 = m^2 c^2 \\<br /> \end{align*}<br />
Is the minkowski norm of the four vector force:
<br /> f = m\frac{d^2 x}{d\tau^2} <br />
also an invarient? I think it has to be. Assuming that is the case, what would the value (and significance if any) of this be?
Last edited: