Inverse functions and null set.

blastoise
Messages
22
Reaction score
0
Ok,

I understand an inverse function sends a variable in the range to the corresponding value in the domain, but am not sure if what I'm thinking is correct... : For example:

Let A be the set


A = \{1,2,3,7,8\} ; B = \{4,5,6\} and the function f map A to B s.t

f(1) = 4
f(2) = 5
f(3) = 6

so 7,8 do not have a value that is mapped one to one.

I understand f is an surjection, but not a injection . But, does an inverse function exist?

I would say yes, despite there not being a value in B that maps to 7 or 8.
Is my thinking correct?


Also, am I correct to say that a function does not have to use every element in the domain in order to have an inverse; I am confused because wouldn't one just say it maps to the null set and the inverse of the null set would contain values(7,8) that it maps to and hence not a function...?
 
Mathematics news on Phys.org
blastoise said:
Ok,

I understand an inverse function sends a variable in the range to the corresponding value in the domain, but am not sure if what I'm thinking is correct... : For example:

Let A be the set


A = \{1,2,3,7,8\} ; B = \{4,5,6\} and the function f map A to B s.t

f(1) = 4
f(2) = 5
f(3) = 6

so 7,8 do not have a value that is mapped one to one.


*** ...and thus f is NOT a function from A to B but one from a proper subset of A to B...***



I understand f is an surjection, but not a injection . But, does an inverse function exist?


*** Yes, if we look at f defined from {1,2,3} onto {4,5,6}. ***



I would say yes, despite there not being a value in B that maps to 7 or 8.
Is my thinking correct?


Also, am I correct to say that a function does not have to use every element in the domain in order to have an inverse; I am confused because wouldn't one just say it maps to the null set and the inverse of the null set would contain values(7,8) that it maps to and hence not a function...?


If we talk of a function f: A\to B , we're explicitly assuming f is defined in the whole of A. Whether f is 1-1 and/or onto is another matter.

DonAntonio
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top