r.a.c.
- 20
- 0
Hi. Now you probably know that if a function fk(x) converges uniformly to f(x) then we are allowed to certain actions such as
lim<sub>n-> \inf</sub> \int f (of k) dx = \int f dx
In other words we are allowed to exchange limit and integral. Now say we have any sequnce valued function fk(x) . And we also have
lim<sub>n-> \inf</sub> \int f (of k) dx = 0
Does that imply that fk(x) converges uniformly to 0?
lim<sub>n-> \inf</sub> \int f (of k) dx = \int f dx
In other words we are allowed to exchange limit and integral. Now say we have any sequnce valued function fk(x) . And we also have
lim<sub>n-> \inf</sub> \int f (of k) dx = 0
Does that imply that fk(x) converges uniformly to 0?