MHB Investigate Convergence of tanx Series: Find Common Ratio & Sum to Infinity

AI Thread Summary
The discussion focuses on investigating the convergence of the sequence tan(x), tan(2x), tan(3x), ..., tan(nx) for x in the interval (-90, 90 degrees). The series can be expressed as a geometric series, which converges when the absolute value of tan(x) is less than 1, specifically for -π/4 < x < π/4. The sum to infinity of the series is given by the formula 1/(1 - tan(x)). There is confusion regarding the evaluation of this sum at x = 45 degrees, where tan(45) equals 1, leading to division by zero. The conclusion emphasizes leaving the sum expressed as 1/(1 - tan(x)) for values of x that do not cause divergence.
Alexeia
Messages
9
Reaction score
0
Hi,

Please help me with this question: Investigate the convergence of the sequence tanx;tan2x;tan3x;...;tannx for xE(-90;90 degrees). Steps to follow: Find common ratio. Draw the graph. For which values will x converge. Determine sum to infinity.

I did try to solve, but file type too big to upload my answers.

Please help..

Thanks
 
Mathematics news on Phys.org
Alexeia said:
Hi,

Please help me with this question: Investigate the convergence of the sequence tanx;tan2x;tan3x;...;tannx for xE(-90;90 degrees). Steps to follow: Find common ratio. Draw the graph. For which values will x converge. Determine sum to infinity.

I did try to solve, but file type too big to upload my answers.

Please help..

Thanks

Setting $\tan x = \xi$ the series to be analized is $\displaystyle \sum_{n = 0}^{\infty} \xi^{n}$, which is 'geometrical' and converges for $|\xi|< 1 \implies -\frac{\pi}{4} < x < \frac{\pi}{4}$... in case of convergence is $\displaystyle \sum_{n=0}^{\infty} \tan^{n} x = \frac{1}{1 - \tan x}$...

Kind regards

$\chi$ $\sigma$

P.S. The formula for geometric sums is in...

Geometric Series -- from Wolfram MathWorld
 
Last edited:
Thank you,

The last part, how do you derive that the sum to infinity is 1 \div(1 - tanx)? Is it according to the Sum to infinity formula? To find the answer do I use 1 \div(1 - tan(45))? 1\div1 - tan(45) , Cant divide by 0.. ? Or do I just leave it as 1\div(1 - tanx)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top