MHB Investigate Convergence of tanx Series: Find Common Ratio & Sum to Infinity

Alexeia
Messages
9
Reaction score
0
Hi,

Please help me with this question: Investigate the convergence of the sequence tanx;tan2x;tan3x;...;tannx for xE(-90;90 degrees). Steps to follow: Find common ratio. Draw the graph. For which values will x converge. Determine sum to infinity.

I did try to solve, but file type too big to upload my answers.

Please help..

Thanks
 
Mathematics news on Phys.org
Alexeia said:
Hi,

Please help me with this question: Investigate the convergence of the sequence tanx;tan2x;tan3x;...;tannx for xE(-90;90 degrees). Steps to follow: Find common ratio. Draw the graph. For which values will x converge. Determine sum to infinity.

I did try to solve, but file type too big to upload my answers.

Please help..

Thanks

Setting $\tan x = \xi$ the series to be analized is $\displaystyle \sum_{n = 0}^{\infty} \xi^{n}$, which is 'geometrical' and converges for $|\xi|< 1 \implies -\frac{\pi}{4} < x < \frac{\pi}{4}$... in case of convergence is $\displaystyle \sum_{n=0}^{\infty} \tan^{n} x = \frac{1}{1 - \tan x}$...

Kind regards

$\chi$ $\sigma$

P.S. The formula for geometric sums is in...

Geometric Series -- from Wolfram MathWorld
 
Last edited:
Thank you,

The last part, how do you derive that the sum to infinity is 1 \div(1 - tanx)? Is it according to the Sum to infinity formula? To find the answer do I use 1 \div(1 - tan(45))? 1\div1 - tan(45) , Cant divide by 0.. ? Or do I just leave it as 1\div(1 - tanx)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top